98%
921
2 minutes
20
Rationale: Although the mesocorticolimbic dopamine (DA) system is the main neurochemical substrate that regulates the addictive and reinforcing effects of ethanol (EtOH), other neurotransmitter systems, such as the acetylcholine (Ach) system, modulate DAergic function in the nucleus accumbens (nAcc). Previously, we reported that intra-nAcc administration of the nicotinic Ach receptor agonist cytisine increased oral EtOH self-administration. GABAB receptors in the nAcc are expressed in DAergic terminals, inhibit the regulation of DA release into the nAcc, and could modulate the effects of cytisine on oral EtOH self-administration. The present study assessed the effects of intra-nAcc administration of the GABAB receptor agonist baclofen (BCF) on the impacts of cytisine on oral EtOH self-administration.
Methods: Male Wistar rats were deprived of water for 23.30 h and then trained to press a lever to receive EtOH on an FR3 schedule until a stable response rate of 80 % was achieved. After this training, the rats received an intra-nAcc injection of the nAch receptor agonist cytisine, BCF, and cytisine or 2-hydroxysaclofen, BCF, and cytisine before they were given access to EtOH on an FR3 schedule.
Results: Intra-nAcc injections of cytisine increased oral EtOH self-administration; this effect was reduced by BCF, and 2-hydroxysaclofen blocked the effects of BCF.
Conclusions: These findings suggest that the reinforcing effects of EtOH are modulated not only by the DA system but also by other neurotransmitter systems involved in regulating DA release from DAergic terminals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbb.2024.173850 | DOI Listing |
Drug Deliv Transl Res
September 2025
Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India.
Diabetes is a metabolic disorder of increasing global concern. Characterized by constantly elevated levels of glucose, severe β-cell dysfunction, and insulin resistance, it is the cause of a major burden on patients if not managed with therapeutic and lifestyle changes. The human body is slowly developing tolerance to many marketed antidiabetic drugs and the quest for the discovery of newer molecules continues.
View Article and Find Full Text PDFHeart Lung Circ
September 2025
Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA,
Cardiovascular-kidney-metabolic (CKM) syndrome is a term that is increasingly used to describe interconnected conditions that lead to poor health outcomes, including cardiovascular disease, chronic kidney disease, type 2 diabetes, and obesity. Historically, there have been very few targeted pharmacotherapies available that have changed cardiovascular outcomes for people with CKM syndromes; however, over the past decade, new pharmacologic options have rapidly expanded, with strong evidence for cardiovascular and kidney protective benefits in CKM conditions. Of note, sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists have emerged as key therapeutic options and are now widely guideline-endorsed.
View Article and Find Full Text PDFPancreatology
August 2025
Department of Dermatology, The People's Hospital of Rongchang District, Chongqing, China. Electronic address:
J Adv Res
September 2025
Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar. Electronic address:
Background: Studies on the interaction of cancer cells with other cells (fibroblasts, endothelial cells, and immune cells) of the tumor microenvironment (TME) have led to the development of many novel targeted therapies. More recently, the notion that neuronal cells of the TME could impact various processes supporting cancer progression has gained momentum. Tumor-associated neurons release neurotransmitters into the TME that, in turn, bind to specific receptors on different target cells, supporting cancer progression.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812 USA. Electronic address:
SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.
View Article and Find Full Text PDF