98%
921
2 minutes
20
Advancements in space-based ocean observation and computational data processing techniques have demonstrated transformative value for managing living resources, biodiversity, and ecosystems of the ocean. We synthesize advancements in leveraging satellite-derived insights to better understand and manage fishing, an emerging revolution of marine industrialization, ocean hazards, sea surface dynamics, benthic ecosystems, wildlife via electronic tracking, and direct observations of ocean megafauna. We consider how diverse space-based data sources can be better coupled to modernize and improve ocean management. We also highlight examples of how data from space can be developed into tools that can aid marine decision-makers managing subjects from whales to algae. Thoughtful and prospective engagement with such technologies from those inside and outside the marine remote sensing community is, however, essential to ensure that these tools meet their full potential to strengthen the effectiveness of ocean management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-marine-050823-120619 | DOI Listing |
Biol Lett
September 2025
Sea Power Reinforcement·Security Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.
Passive acoustic monitoring is an observation method for detecting and characterizing ocean soundscapes, and it has recently been used to observe underwater marine life. The brown croaker () is an important fish species in the Northwest Pacific Ocean that produces biological sounds. In this study, the sounds of 150 adult brown croakers were recorded continuously for three weeks using a self-recording hydrophone.
View Article and Find Full Text PDFMar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:
This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:
Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:
Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
The Indian Sundarban Delta (ISD), located at the confluence of the Ganga-Brahmaputra-Meghna river system along India's eastern coast, is among the world's most geomorphologically dynamic and environmentally vulnerable deltaic systems. Over the past five decades, the region has undergone substantial morphodynamic changes driven by natural forces such as relative sea-level rise, wave action, and sediment flux, as well as anthropogenic factors like upstream water regulation via dams and barrages. This study examines the long-term evolution of shoreline and island morphology across the ISD from 1972 to 2025 using multi-temporal Landsat datasets under consistent tidal conditions.
View Article and Find Full Text PDF