98%
921
2 minutes
20
Introduction: The activation of cerebral endothelial cells (CECs) has recently been reported to be the earliest acute neuroinflammation event in the CNS during sepsis-associated encephalopathy (SAE). Importantly, adenosine-to-inosine (A-to-I) RNA editing mediated by ADARs has been associated with SAE, yet its role in acute neuroinflammation in SAE remains unclear.
Methods: Our current study systematically analyzed A-to-I RNA editing in cerebral vessels, cerebral endothelial cells (CECs), and microglia sampled during acute neuroinflammation after treatment in a lipopolysaccharide (LPS)-induced SAE mouse model.
Results: Our results showed dynamic A-to-I RNA editing activity changes in cerebral vessels during acute neuroinflammation. Differential A-to-I RNA editing (DRE) associated with acute neuroinflammation were identified in these tissue or cells, especially missense editing events such as S367G in antizyme inhibitor 1 () and editing events in lincRNAs such as maternally expressed gene 3 (), , and macrophage M2 polarization regulator (). Importantly, geranylgeranyl diphosphate synthase 1 () and another three genes were differentially edited across cerebral vessels, CECs, and microglia. Notably, Spearman correlation analysis also revealed dramatic time-dependent DRE during acute neuroinflammation, especially in GTP cyclohydrolase1 () and non-coding RNA activated by DNA damage (), both with the editing level positively correlated with both post-LPS treatment time and edited gene expression in cerebral vessels and CECs.
Discussion: The findings in our current study demonstrate substantial A-to-I RNA editing changes during acute neuroinflammation in SAE, underlining its potential role in the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328407 | PMC |
http://dx.doi.org/10.3389/fnins.2024.1435185 | DOI Listing |
Transl Neurosci
January 2025
Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China.
Objectives: Excessive neuroinflammatory responses represent a key pathological mechanism in cerebral small vessel disease (CSVD). Dl-3--butylphthalide (NBP), a compound previously demonstrated to possess anti-inflammatory properties in ischemic stroke, was investigated for its potential therapeutic effects in a rodent model of CSVD. This study aimed to elucidate the neuroprotective mechanisms of NBP in CSVD pathogenesis.
View Article and Find Full Text PDFNeural Plast
September 2025
Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Astrocytes play a crucial role in ensuring neuronal survival and function. In stroke, astrocytes trigger the unfolded protein response (UPR) to restore endoplasmic reticulum homeostasis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified endoplasmic reticulum stress-induced neurotrophic factor, attenuates cerebral ischemic injury by reducing inflammatory responses.
View Article and Find Full Text PDFAlcohol Res
September 2025
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington.
Purpose: Alcohol use disorder (AUD) and mild traumatic brain injury (mTBI) have a bidirectional, synergistic, and complicated relationship. Although it is difficult to definitively say that mTBI causes AUD, certain biological mechanisms that occur after trauma are also associated with hazardous alcohol use. Hazardous drinking is defined as any quantity or pattern of alcohol consumption that places people at risk for physical and/or psychological harm.
View Article and Find Full Text PDFRev Neurol
August 2025
Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 100053 Beijing, China.
Background: microRNA-494 (miRNA-494) plays a key role in neuroinflammation following cerebral ischemia. We aimed to assess miRNA-494 levels as a biomarker for predicting acute ischemic stroke (AIS) severity and outcomes.
Methods: miRNA-494 levels in peripheral lymphocytes were measured using reverse transcription-quantitative polymerase chain reaction.
Life Sci Alliance
November 2025
Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
Enterovirus D68 (EV-D68) is an emerging respiratory virus associated with extra-respiratory complications, especially acute flaccid myelitis. However, the pathogenesis of acute flaccid myelitis is not fully understood. It is hypothesised that through infection of skeletal muscles, the virus further infects motor neurons via the neuromuscular junction.
View Article and Find Full Text PDF