98%
921
2 minutes
20
This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134818 | DOI Listing |
Physiol Plant
September 2025
Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFJ Proteome Res
September 2025
Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands.
Plasma proteomics has regained attention in recent years through advancements in mass spectrometry instrumentation and sample preparation as well as new high-throughput affinity-based technologies. Here, we evaluate the analytical performance of the new Olink Reveal platform, a proximity extension assay (PEA)-based technology quantifying 1034 proteins and covering many biological pathways, in particular immune system processes. Using spiked-in recombinant Interleukin-10 (IL-10) and vascular endothelial growth factor D (VEGF-D) in the NIST SRM 1950 plasma standard, we assessed the linearity, sensitivity, precision, and accuracy of the Olink Reveal assay.
View Article and Find Full Text PDFFood Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2025
All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St.Petersburg, Russia.
We report the genome sequence of strain AX7B, isolated from the pea rhizosphere and capable of utilizing abscisic acid as a sole carbon source. The complete genome consists of a 6.62 Mb chromosome and a 0.
View Article and Find Full Text PDF