Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypothesis: Nano-scale dynamics of self-assembled therapeutics play a large role in their biological function. However, assessment of such dynamics remains absent from conventional pharmaceutical characterization. We hypothesize that time-resolved small-angle neutron scattering (TR-SANS) can reveal their kinetic properties. For lipid nanoparticles (LNP), limited molecular motion is important for avoiding degradation prior to entering cells while, intracellularly, enhanced molecular motion is then vital for effective endosomal escape. We propose TR-SANS for quantifying molecular exchange in LNPs and, therefore, enabling optimization of opposing molecular behaviors of a pharmaceutical in two distinct environments.

Experiments: We use TR-SANS in combination with traditional SANS and small-angle x-ray scattering (SAXS) to experimentally quantify nano-scale dynamics and provided unprecedented insight to molecular behavior of LNPs.

Findings: LNPs have molecular exchange dynamics relevant to storage and delivery which can be captured using TR-SANS. Cholesterol exchanges on the time-scale of hours even at neutral pH. As pH drops below the effective pKa of the ionizable lipid, molecular exchange occurs faster. The results give insight into behavior enabling delivery and provide a quantifiable metric by which to compare formulations. Successful analysis of this multi-component system also expands the opportunities for using TR-SANS to characterize complex therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.061DOI Listing

Publication Analysis

Top Keywords

molecular exchange
16
time-resolved small-angle
8
small-angle neutron
8
neutron scattering
8
molecular
8
nano-scale dynamics
8
molecular motion
8
tr-sans
5
scattering characterization
4
characterization molecular
4

Similar Publications

Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.

View Article and Find Full Text PDF

Pleural effusions (PLEF) in pulmonary arterial hypertension (PAH), particularly in patients with isolated right heart failure, are associated with poor prognosis and increased mortality. This study investigates changes in alveolar fluid clearance (AFC) transporter expression in relation to lung fluid accumulation and PLEF formation during PAH progression, as well as the effects of terbutaline (TER) and riociguat (RIO) treatment. Using a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model, we performed a detailed molecular analysis of AFC transporter expression at different disease stages, both before and after PH development.

View Article and Find Full Text PDF

Ca Fluxes across Membrane Contact Sites.

Cold Spring Harb Perspect Biol

September 2025

Department of Biomedical Sciences (DSB), University of Padova, Padova 35131, Italy

The calcium ion (Ca) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca flux through specialized channels.

View Article and Find Full Text PDF

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF