98%
921
2 minutes
20
This study investigated the impact of ocean acidification on the photodegradation of three microplastics (MPs): polypropylene (PP), expanded polystyrene (EPS), and ethylene-vinyl acetate (EVA), under accelerated UV radiation at three pH levels (i.e., 8.1, 7.8, and 7.5), simulating marine conditions. The acidification system simulated current and projected future environmental conditions. As expected, an increase in partial pressure of CO2, total inorganic carbon, bicarbonate ion, and CO2 resulted in more acidic pH levels, with the reverse being true for the carbonate ion. Structural changes of MPs were evaluated, revealing that all weathered samples underwent higher degradation rate compared to the virgin samples. The oxidation state and crystallinity of PP and EVA MPs were higher in samples exposed to the lowest pH, whereas no significant increase in the degradation rate of EPS samples was observed. Saltwater acidification in this study contributed to enhance the photo-oxidation of MPs depending on their polymeric composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2024.116854 | DOI Listing |
Mar Environ Res
August 2025
Departamento de Biología Animal, Edafología y Geología. Facultad de Ciencias. Sección Biología. Universidad de La Laguna, Tenerife, Canary Islands, Spain.
Anthropogenic CO emissions drive ocean acidification (OA), which reduces seawater pH and carbonate ion availability, threatening calcifying organisms such as sea urchins. This study examines the long-term effects of OA on Arbacia lixula using a natural volcanic CO vent at Fuencaliente, La Palma (Canary Islands) as an analogue of future conditions. We analyzed the external morphology, skeletal strength, mineralogy, and growth of A.
View Article and Find Full Text PDFElife
September 2025
Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig Maximilians-Universität München, Munich, Germany.
The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.
View Article and Find Full Text PDFMar Environ Res
August 2025
Hellenic Centre for Marine Research, Institute of Oceanography, Heraklion, Greece.
Ocean acidification (OA) due to anthropogenic CO2 emissions has significantly altered ocean chemistry since the industrial era. Ocean alkalinity enhancement (OAE) is an innovative strategy to mitigate excess CO, with ocean liming (OL) serving as a potential carbon dioxide removal (CDR) method, through the spreading of Ca(OH) (slaked lime) at the ocean surface. This study examined the ecological effects of OL on a natural zooplankton community from the ultraoligotrophic Eastern Mediterranean Sea during a 14-day mesocosm experiment conducted in spring-summer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Key Laboratory of Mariculture of Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China.
Bivalve farming, a vital component of global aquaculture, has been proposed as a potential marine carbon dioxide removal (mCDR) strategy, yet its role remains contentious. Using field mesocosms, we demonstrate that oyster filter-feeding enhances mCDR by accelerating the formation of particulate and dissolved organic carbon in the water column and promoting organic carbon deposition in sediments. This process shifts the water column toward a more autotrophic and alkaline state, effectively sequestering CO from the atmosphere.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA.
Ocean acidification poses a threat to coral skeleton formation via reductions in the saturation state of aragonite (Ω) in seawater. Given that corals precipitate their skeletons from a calcifying fluid supplied by seawater, reductions in seawater Ω should, in theory, confound calcification. Here, we reconstruct up to 200 years of coral calcifying fluid Ω, using Raman spectroscopy techniques, at approximately monthly resolution in two sp.
View Article and Find Full Text PDF