98%
921
2 minutes
20
Background: The diagnosis of Parkinson's disease is currently based on clinical evaluation. Despite clinical hallmarks, unfortunately, the error rate is still significant. Low in-vivo diagnostic accuracy of clinical evaluation mainly relies on the lack of quantitative biomarkers for an objective motor performance assessment. Non-invasive technologies, such as wearable sensors, coupled with machine learning algorithms, assess quantitatively and objectively the motor performances, with possible benefits either for in-clinic and at-home settings. We conducted a systematic review of the literature on machine learning algorithms embedded in smart devices in Parkinson's disease diagnosis.
Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we searched PubMed for articles published between December, 2007 and July, 2023, using a search string combining "Parkinson's disease" AND ("healthy" or "control") AND "diagnosis", within the Groups and Outcome domains. Additional search terms included "Algorithm", "Technology" and "Performance".
Results: From 89 identified studies, 47 met the inclusion criteria based on the search string and four additional studies were included based on the Authors' expertise. Gait emerged as the most common parameter analysed by machine learning models, with Support Vector Machines as the prevalent algorithm. The results suggest promising accuracy with complex algorithms like Random Forest, Support Vector Machines, and K-Nearest Neighbours.
Discussion: Despite the promise shown by machine learning algorithms, real-world applications may still face limitations. This review suggests that integrating machine learning with wearable sensors has the potential to improve Parkinson's disease diagnosis. These tools could provide clinicians with objective data, potentially aiding in earlier detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00415-024-12611-x | DOI Listing |
Bull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Department of Computer Science, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.
View Article and Find Full Text PDF