98%
921
2 minutes
20
Protein degraders, such as bifunctional proteolysis-targeting chimeras (PROTACs), selectively eliminate target proteins by leveraging the natural protein degradation machinery. PROTACs bridge the target protein with an E3 ligase, which induces ubiquitination and degradation. Investigating ternary complex structures elucidates the molecular mechanisms of their formation and degradation. This study examines the binding dynamics of E3 ligases (VHL, CRBN, and cIAP) with proteins of interest, focusing on dynamics, cooperativity, selectivity, linker length, and PROTAC conformations. The influence of interface residues and linker lengths on specific conformations for target proteins and E3 ligases is highlighted. Utilizing molecular dynamics and steered molecular dynamics simulations, the study provides comprehensive parameters on the behavior and stability of diverse ternary complexes. These insights are crucial for designing PROTACs targeting disease-causing proteins and advancing the development of degradable ternary complexes for therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317996 | PMC |
http://dx.doi.org/10.1021/acsmedchemlett.4c00189 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
September 2025
Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.
View Article and Find Full Text PDFChem Sci
August 2025
Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
Predicting Antibody-Antigen (Ab-Ag) docking and structure-based design represent significant long-term and therapeutically important challenges in computational biology. We present SAGERank, a general, configurable deep learning framework for antibody design using Graph Sample and Aggregate Networks. SAGERank successfully predicted the majority of epitopes in a cancer target dataset.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
Resistant starches with additional functionalities, such as starch-polyphenol complexes, are generating great interest due to the increasing incidence of diet-related diseases. However, preparing these complexes remains a major challenge due to the incompatible structures of many natural phenolic compounds. Herein, three protocols were compared for preparing novel amylose (AM) complexes with polyphenol quercetin (Q) in the presence of lauric acid (LA).
View Article and Find Full Text PDFFEBS J
September 2025
Neutron Scattering Division, Oak Ridge National Laboratory, USA.
Serine hydroxymethyltransferase (SHMT) is a critical enzyme in the one-carbon (1C) metabolism pathway catalyzing the reversible conversion of L-Ser into Gly and concurrent transfer of 1C unit to tetrahydrofolate (THF) to give 5,10-methylene-THF (5,10-MTHF), which is used in the downstream syntheses of biomolecules critical for cell proliferation. The cellular 1C metabolism is hijacked by many cancer types to support cancer cell proliferation, making SHMT a promising target for the design and development of novel small-molecule antimetabolite chemotherapies. To advance structure-assisted drug design, knowledge of SHMT catalysis is crucial, but can only be fully realized when the atomic details of each reaction step governed by the acid-base catalysis are elucidated by visualizing active site hydrogen atoms.
View Article and Find Full Text PDF