98%
921
2 minutes
20
The mechanosensory lateral line (LL) system of salmonid fishes has been the focus of comparative morphological studies and behavioral and physiological analyses of flow sensing capabilities, but its morphology and development have not been studied in detail in any one species. Here, we describe the post-embryonic development of the cranial LL system in Brook Trout, Salvelinus fontinalis, using vital fluorescent staining (4-Di-2-ASP), scanning electron microscopy, µCT, and clearing and staining to visualize neuromasts and the process of cranial LL canal morphogenesis. We examined the relationship between the timing of LL development, the prolonged life history of salmonids, and potential ecological implications. The LL system is composed of seven canals containing canal neuromasts (CNs) and four lines of superficial neuromasts (SNs) on the skin. CNs and SNs increase in number and size during the alevin (larval) stage. CN number stabilizes as canal morphogenesis commences, but SN number increases well into the parr (juvenile) stage. CNs become larger and more elongated than SNs, but the relative area occupied by sensory hair cells decreases during ontogeny in both types of neuromasts. Neuromast-centered canal morphogenesis starts in alevins (yolk sac larvae), as they swim up into the water column from their gravel nests (~4 months post-fertilization), after which yolk sac absorption is completed and exogenous feeding begins. Canal morphogenesis proceeds asynchronously within and among canal series and is not complete until ~8 months post-fertilization (the parr stage). Three characters in the LL system and associated dermal bones were used to identify their homologs in other actinopterygians and to consider the evolution of LL canal reduction, thus demonstrating the value of salmonids for the study of LL evolution. The prolonged life history of Brook Trout and the onset of canal morphogenesis at swim-up are predicted to have implications for neuromast function at these critical behavioral and ecological transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmor.21754 | DOI Listing |
Int Endod J
September 2025
Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea.
Aim: Prickle planar cell polarity (PCP) protein 2 (Prickle2) encodes a homologue of Drosophila prickle and is involved in the non-canonical Wnt/PCP signalling pathway. However, its exact role in dentinogenesis remains unclear. Dentinogenesis, a key process in tooth morphogenesis, involves the patterned arrangement of odontoblasts and the formation of dentine matrix along the pulp cavity.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY.
Morphogenesis of the anterior segment (AS) is crucial for healthy ocular physiology and vision but is only partially understood. The Schlemm's canal (SC) and trabecular meshwork (TM) are essential drainage tissues within the AS, and their proper development and function are critical for maintaining normal intraocular pressure; abnormalities in either tissue can result in elevated pressure and glaucoma. Here, we use single-cell transcriptomic profiling to provide high-resolution molecular detail of AS development with a particular focus on SC and TM.
View Article and Find Full Text PDFJ Helminthol
September 2025
Zoological Institute, https://ror.org/05snbjh64Russian Academy of Sciences, Universitetskaya Emb., 1, 199034St. Petersburg, Russian Federation.
The mother sporocyst is the least understood digenean life cycle stage. This study provides the first detailed description of the neuromusculature and reproductive apparatus of mother sporocysts in the hemiuroid digenean , a monoxenous parasite of White Sea mud snails, using transmission electron microscopy and fluorescent staining for muscles, FMRFamide-related peptides (FaRP), and serotonin (5HT). These parthenitae lack a germinal mass and have only a few germinal elements, which explains their limited reproductive potential.
View Article and Find Full Text PDFJ Biosci
August 2025
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
In the wild, the nematode primarily feeds on microbes, which are abundant in rotting vegetation. Studies show that several gram-positive and gram-negative bacterial populations predominantly constitute the gut microbiome, but surprisingly lack any yeast species. To understand the lack of yeast in the intestine of , we studied the behaviour of worms on pathogenic and non-pathogenic yeast diets.
View Article and Find Full Text PDFInt J Mol Sci
July 2025
Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain's limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development.
View Article and Find Full Text PDF