Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Propane dehydrogenation (PDH) is a highly efficient approach for industrial production of propylene, and the dual-atom catalysts (DACs) provide new pathways in advancing atomic catalysis for PDH with dual active sites. In this work, we have developed an efficient strategy to identify promising DACs for PDH reaction by combining high-throughput density functional theory (DFT) calculations and the machine-learning (ML) technique. By choosing the γ-AlO(100) surface as the substrate to anchor dual metal atoms, 435 kinds of DACs have been considered to evaluate their PDH catalytic activity. Four ML algorithms are employed to predict the PDH activity and determine the relationship between the intrinsic characteristics of DACs and the catalytic activity. The promising catalysts of CuFe, CuCo and CoZn DACs are finally screened out, which are further validated by the whole kinetic reaction calculations, and the highly efficient performance of DACs is attributed to the synergistic effects and interactions between the paired active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp02219jDOI Listing

Publication Analysis

Top Keywords

highly efficient
12
dual-atom catalysts
8
propane dehydrogenation
8
active sites
8
catalytic activity
8
dacs
6
pdh
5
discovery highly
4
efficient
4
efficient dual-atom
4

Similar Publications

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Characterization on Respiratory Bioaccessibility of Organophosphate Esters Based on a Mouth-Throat Model, Exhaled Breath Condensate, and Sputum.

Environ Sci Technol

September 2025

School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.

To characterize the bioaccessibility of inhaled organophosphate esters (OPEs) in the respiratory tract, we employed a highly idealized mouth-throat model to investigate the occurrence, distribution, and deposition of 17 OPEs in airborne particulate matter (PM, PM, and PM; = 80 pairs) and gas phases ( = 48) under gradient temperature and humidity. OPEs concentrations were also measured in exhaled breath condensate (EBC; = 50) and sputum ( = 30) from 30 adults. Total median ∑OPEs concentrations in inhaled air were 4.

View Article and Find Full Text PDF

Optically active α-aminophosphonic acids are unique analogues of α-amino acids, and numerous synthetic methods have been developed. Herein, we present a highly diastereoselective α-azidation approach to the CAMDOL-derived phosphonates, enabling ready access to 27 diverse α-azidophosphonates with defined chirality in up to 85% yield and more than 99:1 dr. Late-stage transformations through the Staudinger reaction or click reaction efficiently delivered the related pharmacological α-aminophosphonic acids or the unique α-triazolylphosphonate derivative, respectively.

View Article and Find Full Text PDF

Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.

View Article and Find Full Text PDF

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF