Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rise of multidrug-resistant malaria requires accelerated development of novel antimalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood antimalarial drug concentrations with the parasite-time profile to inform dosing regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of a new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 7 days after inoculation with malaria parasites. The cipargamin profiles were generated from a two-compartment PK model and parasite profiles from a previously published biologically informed PD model. One thousand PK-PD data sets of eight patients were simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incorporated in a Bayesian hierarchical framework, and the parameters were estimated. Population PK model parameters describing absorption, distribution, and clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set using the estimated PK parameters. Posterior predictive checks demonstrate that our PK-PD model adequately captures the simulated PD profiles. The bias of the estimated population average PD parameters was low-moderate in magnitude. This simulation study demonstrates the viability of our PK-PD model to predict parasitological outcomes in Phase 2 volunteer infection studies. This work will inform the dose-effect relationship of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373224PMC
http://dx.doi.org/10.1128/aac.00863-24DOI Listing

Publication Analysis

Top Keywords

pk-pd model
16
bayesian hierarchical
12
phase study
12
model
9
model predicting
8
parasitological outcomes
8
outcomes phase
8
antimalarial drugs
8
antimalarial drug
8
dosing regimens
8

Similar Publications

Optimizing Linezolid Dosing for Nosocomial Urinary Tract Infections in Critically Ill Patients with Renal Impairment.

Int J Antimicrob Agents

September 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China; National Key Laboratory of Advanced Drug Formulations for Overcoming Delivery Barriers, Fudan University, Shanghai, China. Electronic address:

Background: This study characterized the urinary pharmacokinetics and pharmacodynamics (PK/PD) of linezolid (LNZ) in critically ill patients with renal impairment and nosocomial multidrug-resistant Gram-positive urinary tract infections (UTIs). The aim was to address therapeutic challenges arising from limited treatment options and uncertain urinary excretion, to establish optimized dosing strategies.

Methods: A prospective observational study was conducted in ICU patients with renal impairment.

View Article and Find Full Text PDF

Canine Mdr1 Knockout MDCK Cells Reliably Estimate Human Small Intestinal Permeability () and Fraction Absorbed ().

Mol Pharm

September 2025

Johnson & Johnson, Translational PK/PD & Investigational Toxicology, Spring House, Pennsylvania 19002, United States.

Human intestinal permeability is a key determinant of the oral fraction absorbed () of active pharmaceutical ingredients (APIs). This study evaluated the ability of an in-house canine Mdr1 (cMdr1) knockout (KO) Madin-Darby Canine Kidney (MDCK) cell line to correlate apparent permeability () with human small intestinal permeability (). values of 16 reference compounds with high, medium, or low permeabilities were measured in the in-house cMdr1 KO MDCK protocol under pH gradient (6.

View Article and Find Full Text PDF

Clinical Pharmacology Characterization of the First-In-Class Oncolytic Viral Therapy T-VEC in Adults and Pediatric Subjects.

J Clin Pharmacol

September 2025

Clinical Pharmacology, Modeling and Simulation, Amgen Inc., South San Francisco, CA, USA.

Oncolytic viruses are an emerging class of immunotherapies for cancer treatment. Talimogene laherparepvec (T-VEC) is a first-in-class oncolytic virus approved globally for advanced melanoma. Herein, we describe the quantitative clinical pharmacology aspects of T-VEC that supported the development of this unique therapy.

View Article and Find Full Text PDF

Botulinum Neurotoxin Type A (BoNT-A) remains the cornerstone of glabellar frown line treatment, yet conventional low-dose, high-volume protocols often result in limited durability and imprecise diffusion. This study presents multiscale, in silico framework specifically designed to evaluate high-dose (60-80 Units), low-volume (≤0.045 mL/site) BoNT-A glabellar injection strategies across anatomically realistic conditions.

View Article and Find Full Text PDF

The objective of this study was to develop a population pharmacokinetic model for linezolid in hematooncological patients with sepsis, and to propose dosing optimization based on pharmacokinetic covariates that would lead to improved achievement of the PK/PD target. Therapeutic drug monitoring data from hematooncological patients treated with linezolid for suspected or proven sepsis were analyzed. A pharmacokinetic population model for linezolid was constructed using a nonlinear mixed-effects modeling approach.

View Article and Find Full Text PDF