Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The incomplete blocking of small-sized polysulfides by pore size and the effect on Li transport are generally neglected when the size-sieving effect is employed to suppress the shuttling of polysulfides. Herein, ion-selective modified layers with pore sizes equal to, greater than, and less than 0.8 nm, respectively, on the polypropylene separator are fabricated to obtain the preferable pore size for separation of polysulfides and Li. As a result, the modified layer with a pore size of 0.8 nm can efficiently inhibit the shuttling of polysulfides and simultaneously boost the diffusion of Li under the double effect of the size advantage and electrostatic shielding. Consequently, the battery using a separator with a modified layer having a pore size of 0.8 nm possesses a lower capacity attenuation of 0.047% after 1000 cycles at 2.0 C. This work serves as a vital guide for suppressing polysulfide shuttle using ion-selective sieving effects for lithium-sulfur batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c01480 | DOI Listing |