98%
921
2 minutes
20
RDX undergoes pressures of approximately 30-50 GPa during detonation, leading to significant changes in intermolecular interactions. Accurately describing these interactions is crucial for understanding the energy transfer in the detonation process. To address this, this work introduces a many-body expansion-based quantum mechanical force field (MB-QMFF) to accurately describe RDX's intermolecular interactions under high pressures. Using MB-QMFF, we evaluated various density functionals and found that the M062X functional with GD3 dispersion correction provided the highest accuracy. Regarding intermolecular forces, two-body interactions were the most significant, with three-body interactions being negligible. Additionally, we investigated intermolecular energy variations at different densities (or pressures). The results clearly demonstrate an accurate description of intermolecular interactions by the MB-QMFF scheme. Therefore, we believe that the MB-QMFF scheme can serve as a foundation for the development of RDX-specific force fields and pave the way for future studies on the detonation process of RDX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c01710 | DOI Listing |
J Org Chem
September 2025
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.
The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, ROC.
The synthesis of -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [HT(3,4,5-OCH)PP] and cobalt(II) -tetrakis(3,4,5-trimethoxyphenyl)porphyrin [Co(T(3,4,5-OCH)PP)] has been successfully accomplished. The oxidation properties of [Co(T(3,4,5-OCH)PP)] have been assessed through UV-vis, NMR, and EPR techniques. It can be seen in the UV-vis spectrum that adding SbCl caused extra peaks to appear at 674 nm, which means that a π-cation radical was formed.
View Article and Find Full Text PDFPLoS One
September 2025
Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.
Polar protic and aprotic solvents can effectively simulate the maturation of breast carcinoma cells. Herein, the influence of polar protic solvents (water and ethanol) and aprotic solvents (acetone and DMSO) on the properties of 3-(dimethylaminomethyl)-5-nitroindole (DAMNI) was investigated using density functional theory (DFT) computations. Thermodynamic parameters retrieved from the vibrational analysis indicated that the DAMNI's entropy, heat capacity, and enthalpy increased with rising temperature.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Cavendish Laboratory, NanoPhotonics Centre, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0US, United Kingdom.
Coupling with a resonant optical cavity is well known to modify the coherence of molecular vibrations. However, in the case of molecules coupled to a plasmonic nanocavity mode, the local mechanisms of vibrational coherence decay remain unclear. Here, the dynamics of a few hundred molecules of nitrothiophenol (NTP) within a single plasmonic nanocavity are studied by sum-frequency generation.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, GSP-445, Nizhny Novgorod 603950, Russia.
In this work, an approach enabling the synthesis of η-alkene lithium complexes (Carb)Li(η-L) (L = 1-octene, cyclohexene) is elaborated. For 1,5-hexadiene, the same approach results in a binuclear μ-η:η-diene complex. The QTAIM parameters reveal the electrostatic nature of the Li-alkene interaction.
View Article and Find Full Text PDF