98%
921
2 minutes
20
It is well established that pyruvate kinase M2 (PKM2) activity contributes to metabolic reprogramming in various cancers, including colorectal cancer (CRC). Estrogen or 17β-estradiol (E2) signaling is also known to modulate glycolysis markers in cancer cells. However, whether the inhibition of PKM2 combined with E2 treatment could adversely affect glucose metabolism in CRC cells remains to be investigated. First, we confirmed the metabolic plasticity of CRC cells under varying environmental conditions. Next, we identified glycolysis markers that were upregulated in CRC patients and assessed in vitro mRNA levels following E2 treatment. We found that PKM2 expression, which is highly upregulated in CRC clinical samples, is not altered by E2 treatment in CRC cells. In this study, glucose uptake, generation of reactive oxygen species (ROS), lactate production, cell viability, and apoptosis were evaluated in CRC cells following E2 treatment, PKM2 silencing, or a combination of both. Compared to individual treatments, combination therapy resulted in a significant reduction in cell viability and enhanced apoptosis. Glucose uptake and ROS production were markedly reduced in PKM2-silenced E2-treated cells. The data presented here suggest that E2 signaling combined with PKM2 inhibition cumulatively targets glucose metabolism in a manner that negatively impacts CRC cell growth. These findings hold promise for novel therapeutic strategies targeting altered metabolic pathways in CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.23799 | DOI Listing |
Int Immunopharmacol
September 2025
Cancer Center and Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China. Electronic address:
Ring finger protein 180 (RNF180) is an E3 ubiquitin-protein ligase that promotes polyubiquitination and degradation. We analyzed the roles and molecular mechanisms of RNF180 during the tumorigenesis and progression of colorectal cancer (CRC) through bioinformatics analysis, in vivo and vitro experiments. RNF180 overexpression was observed in CRC, and positively associated with T, N and TNM staging or differentiation.
View Article and Find Full Text PDFExp Cell Res
September 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China. Electronic address:
Background: Enteric glial cells (EGCs) have been implicated in colorectal cancer (CRC) progression. This study aimed to develop and validate a prognostic model integrating EGC- and CRC-associated gene expression to predict patient survival, recurrence, metastasis, and therapy response.
Methods: Bulk and single-cell RNA sequencing data were analyzed, and a machine learning-based model was constructed using the RSF random forest algorithm.
J Adv Res
September 2025
Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar. Electronic address:
Background: Studies on the interaction of cancer cells with other cells (fibroblasts, endothelial cells, and immune cells) of the tumor microenvironment (TME) have led to the development of many novel targeted therapies. More recently, the notion that neuronal cells of the TME could impact various processes supporting cancer progression has gained momentum. Tumor-associated neurons release neurotransmitters into the TME that, in turn, bind to specific receptors on different target cells, supporting cancer progression.
View Article and Find Full Text PDFCell Chem Biol
September 2025
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Centre for Oncology and Im
RhoA is a key cancer driver and potential colorectal cancer (CRC) therapy target but remains undrugged clinically. Using activity-based protein profiling (ABPP) and mass spectrometry (MS), we identified CL16, a covalent inhibitor targeting the unique Cys16 on RhoA subfamily, which confers high specificity over other Rho family proteins. Cys16 is adjacent to the nucleotide-binding pocket and switch regions, which are critical for RhoA function.
View Article and Find Full Text PDFESMO Open
September 2025
Aminex Therapeutics, Inc., Kenmore, USA. Electronic address:
Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.
View Article and Find Full Text PDF