Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Purpose: Accurate and automated segmentation of targets and organs-at-risk (OARs) is crucial for the successful clinical application of online adaptive radiotherapy (ART). Current methods for cone-beam computed tomography (CBCT) auto-segmentation face challenges, resulting in segmentations often failing to reach clinical acceptability. Current approaches for CBCT auto-segmentation overlook the wealth of information available from initial planning and prior adaptive fractions that could enhance segmentation precision.
Materials And Methods: We introduce a novel framework that incorporates data from a patient's initial plan and previous adaptive fractions, harnessing this additional temporal context to significantly refine the segmentation accuracy for the current fraction's CBCT images. We present LSTM-UNet, an innovative architecture that integrates Long Short-Term Memory (LSTM) units into the skip connections of the traditional U-Net framework to retain information from previous fractions. The models underwent initial pre-training with simulated data followed by fine-tuning on a clinical dataset.
Results: Our proposed model's segmentation predictions yield an average Dice similarity coefficient of 79% from 8 Head & Neck organs and targets, compared to 52% from a baseline model without prior knowledge and 78% from a baseline model with prior knowledge but no memory.
Conclusions: Our proposed model excels beyond baseline segmentation frameworks by effectively utilizing information from prior fractions, thus reducing the effort of clinicians to revise the auto-segmentation results. Moreover, it works together with registration-based methods that offer better prior knowledge. Our model holds promise for integration into the online ART workflow, offering precise segmentation capabilities on synthetic CT images.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315102 | PMC |
http://dx.doi.org/10.1016/j.phro.2024.100610 | DOI Listing |