98%
921
2 minutes
20
We investigate the adsorption behavior of polar and nonpolar molecules on carbon nanotube interfaces through computational simulations. Gaussian 16 was utilized to calculate the total energy of each possible molecular structure and analyze the adsorption mechanisms in stacked and inline configurations. The study reveals that nonpolar molecules favor stacked adsorption on two graphene interfaces, while polar molecules prefer inline adsorption. The findings suggest that inline adsorption of polar molecules results in minimal changes to the local dielectric constant, which may explain the absence of multi-step adsorption isotherms. The research examines the stability and energetics of molecular adsorption on graphene layers simulating CNT interfaces. Different types of molecules (polar and nonpolar) exhibit distinct adsorption behaviors, with nonpolar molecules aligning with the IUPAC type VI isotherm model and polar molecules following the Langmuir isotherm model (IUPAC type I). This study provides insight into how molecules are likely to adsorb on CNT surfaces and the impact on the local dielectric constant. This understanding has implications for the design and optimization of CNT-based sensors, particularly in detecting organic solvents and gases in various environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310837 | PMC |
http://dx.doi.org/10.1039/d4ra04474f | DOI Listing |
ACS Appl Mater Interfaces
September 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Usmanu Danfodiyo University, Sokoto.
Ethnopharmacological Relevance: Moringa oleifera L. is widely used in Traditional Medicine across Africa and Asia for managing inflammation, infections, diabetes, and malnutrition. Although its aqueous and ethanolic extracts have been extensively studied, little is known about the safety of its non-polar (hexane) fraction, which may contain unique bioactive compounds.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemistry and Biochemistry, University of South Carolina Columbia SC 29208 USA
Solvent attenuation of dispersion interactions was quantified using a new class of rigid intramolecular CH-π molecular balances. These balances incorporate small, two-carbon CH donors that minimize solvophobic effects and isolate the dispersion component. Folding energies (Δ ) were measured across eight solvents: cyclohexane, toluene, chloroform, ethyl acetate, acetone, acetonitrile, DMSO, and methanol.
View Article and Find Full Text PDFElectrophoresis
September 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, P. R. China.
A novel post-modification strategy was developed for rapid functionalization of monoliths through amino-yne click chemistry. This approach enabled the conjugation of activated alkynes onto amino-functionalized organic-silica hybrid monolith surfaces under mild, catalyst-free conditions. Systematic investigation of critical reaction parameters was conducted to optimize the post-modification process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China.
Radical coupling reactions have been widely used in the synthesis of complex organic molecules, materials science, and drug research. However, restricted conditions or special catalysts are required to overcome the energy barrier and trigger the coupling reaction efficiently. In this study, we provide experimental evidence that the C─N radical coupling reactions can be significantly accelerated by an oriented external electric field (OEEF) under synchronous UV irradiation without a catalyst.
View Article and Find Full Text PDF