98%
921
2 minutes
20
Preparation of activated carbons is an important way to utilize municipal sludge (MS) resources, while drying is a pretreatment method for making activated carbons from MS. In this study, machine learning techniques were used to develop moisture ratio (MR) and composting temperature (CT) prediction models for the thermally assisted biodrying process of MS. First, six machine learning (ML) models were used to construct the MR and CT prediction models, respectively. Then the hyperparameters of the ML models were optimized using the Bayesian optimization algorithm, and the prediction performances of these models after optimization were compared. Finally, the effect of each input feature on the model was also evaluated using SHapley Additive exPlanations (SHAP) analysis and Partial Dependence Plots (PDPs) analysis. The results showed that Gaussian process regression (GPR) was the best model for predicting MR and CT, with R of 0.9967 and 0.9958, respectively, and root mean square errors (RMSE) of 0.0059 and 0.354 ℃. In addition, graphical user interface software was developed to facilitate the use of the GPR model for predicting MR and CT by researchers and engineers. This study contributes to the rapid prediction, improvement, and optimization of MR and CT during thermally assisted biodrying of MS, and also provides valuable guidance for the dynamic regulation of the drying process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.07.032 | DOI Listing |
Stroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFF1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Science, Kunming University of Science and Technology, Kunming, 650500, China.
To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.
View Article and Find Full Text PDFPeriodontol 2000
September 2025
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDF