A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Selective Lithium Recovery from Spent Lithium Manganate Batteries Using Oxidative Stabilization Technique. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using oxidizing compounds to handle the recycling of discarded lithium batteries has advanced significantly in recent years. One of the most prominent methods is the sintered electrode powder treatment using pre-used additives, with an aqueous solution of the oxidizing agent fueling highly selective lithium extraction and transition metals retention in the refractory material. Herein, phosphoric acid (HPO) was used as the exchanger and hydrogen ions provider, the oxidant (KSO) activity was driven by heating, the raw material structure was deformed and adjusted by the oxidizing drive, and lithium was exhausted, while manganese was converted into manganese(III) phosphate hydrate and manganese dioxide insoluble material. The optimized conditions resulted in a lithium leaching rate of 94.16 % and a separation factor of 95.74 %, while the corresponding manganese leaching rate was limited to less than 5 %. The X-ray diffraction, X-ray spectroscopy, scanning electron microscopy, and inductively coupled plasma mass spectrometry measurements were used to investigate the influence of oxidation driving force and lithium leaching. Finally, the lithium leach solution was continuously stirred with sodium carbonate in boiling water to obtain the precipitate, which was separated and washed several times to obtain high-purity lithium carbonate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202401289DOI Listing

Publication Analysis

Top Keywords

selective lithium
8
lithium
8
lithium leaching
8
leaching rate
8
lithium recovery
4
recovery spent
4
spent lithium
4
lithium manganate
4
manganate batteries
4
batteries oxidative
4

Similar Publications