Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The fruit processing industry is responsible for disposing of huge amounts of byproducts, especially fruit peels (FPs), which are often discarded in landfills. Using FPs in biotechnological processes contributes to a circular economy, reducing the environmental burden of FPs and increasing the revenue of the fruit processing industry. This study was focused on upgrading the nutritional value of orange (OPs) and banana (BPs) peels by solid-state fermentation (SSF) with filamentous fungi. SSF factors (moisture, fermentation time, inoculum size, ammonium sulfate (AS), and corn steep liquor (CSL)) and fungi species ( and ) were studied by a variable screening Plackett-Burman design. Both fungi grew on untreated FPs, increasing their protein content and antioxidant activity. Moisture, AS, and CSL were further studied by a Box-Behnken design with . Fermented OPs at 70% moisture and 0.005 g/g AS increased their protein content by 200%, whereas BPs at 70% moisture and 0.005 g/g CSL increased by 123%. Fermented peels were enriched in protein, fiber, and minerals, with a low content of carbohydrates and soluble sugars. Fermented OPs and BPs showed higher antioxidant activity than unfermented peels. The SSF of these FPs is an innovative approach that contributes to obtaining rich nutrient-fermented peels for food.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313692PMC
http://dx.doi.org/10.3390/molecules29153563DOI Listing

Publication Analysis

Top Keywords

solid-state fermentation
8
fruit processing
8
processing industry
8
fps increasing
8
protein content
8
antioxidant activity
8
fermented ops
8
70% moisture
8
moisture 0005
8
0005 g/g
8

Similar Publications

Background And Aim: Purple sweet potatoes ( var. Ayamurasaki) possess high nutritional potential due to their rich content of amino acids, minerals, and fatty acids. However, their nutritional profile can be further improved through fermentation.

View Article and Find Full Text PDF

MOF-engineered activated carbon adsorbent enabling semi-selective ethyl carbamate removal in fermented foods.

Food Res Int

November 2025

Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Solid-state Brewing, Luzhou Laojiao Co. Ltd, Luzhou 646000, China; Key Laboratory of Monitoring and Assessm

Fermented foods are valued for their diverse flavor and health benefits, but the formation of ethyl carbamate (EC), a potential carcinogen, during production and storage poses challenges. Current EC reduction methods often compromise flavor and bioactive components. This study exemplifies a novel adsorbent combining activated carbon with metal-organic framework (MOF) chemistry for semi-selective EC removal.

View Article and Find Full Text PDF

Corn husk, a predominant byproduct derived from intensive corn processing, is characterized by high cellulose content, low protein content, and poor palatability, which makes it difficult to be fully utilized by ruminants. This investigation employed corn husk as substrate for microbial protein production through a two-stage open solid-state fermentation (SSF) system using and yeast strains. The fermentation process yielded a 65.

View Article and Find Full Text PDF

Introduction: Red yeast rice (RYR) is produced through solid-state fermentation by Monascus genus. Its functional component, Monacolin K (MK), has the same structure as lovastatin and can effectively inhibit HMG-CoA reductase, thereby reducing serum cholesterol.

Methods: A combinatorial mutagenesis strategy integrating atmospheric room-temperature plasma and heavy-ion radiation was employed to generate mutant strains.

View Article and Find Full Text PDF

This study investigated the optimal conditions for enhancing protein quality and reducing anti-nutritional factors in soybean meal (SBM) through solid-state fermentation (SSF) with Among 78 isolates, strain MH03 exhibited the highest extracellular enzyme production and efficacy in enhancing SBM quality. Under optimized SSF conditions of 5 kg SBM, 5 cm thickness and 50 % initial moisture for 72 h, strain MH03 increased soluble protein from 3.31±0.

View Article and Find Full Text PDF