98%
921
2 minutes
20
Microplastics (MPs) are present in ambient air in a respirable size fraction; however, their potential impact on human health via inhalation routes is not well documented. In the present study, methods for a lab-scale generation of MPs from regularly used and littered plastic articles were optimized. The toxicity of 11 different types of MPs, both commercially purchased and in-lab prepared MPs, was investigated in lung epithelial cells using cell viability, immune and inflammatory response, and genotoxicity endpoints. The underlying mechanisms were identified by microarray analysis. Although laborious, the laboratory-scale methods generated a sufficient quantity of well characterized MPs for toxicity testing. Of the 11 MPs tested, the small sized polyethylene terephthalate (PETE) MPs prepared from disposable water bottles induced the maximum toxicity. Specifically, the smaller size PETE MPs induced a robust activation of the interferon signaling pathway, implying that PETE MPs are perceived by cells by similar mechanisms as those employed to recognize pathogens. The PETE MPs of heterogenous size and shapes induced cell injury, triggering cell death, inflammatory cascade, and DNA damage, hallmark in vitro events indicative of potential in vivo tissue injury. The study establishes toxicity of specific types of plastic materials in micron and nano size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314056 | PMC |
http://dx.doi.org/10.3390/nano14151287 | DOI Listing |
Lab Chip
September 2025
Dept. of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea 44919.
The vascular endothelium is important in trafficking cells and molecules across the interface. Microphysiological systems (MPS) mimicking their barrier functions have demonstrated various utilities, including drug permeability tests and cell transmigration. However, conventional approaches for constructing endothelial layers in MPS mainly rely on seeding cells on porous membranes coated with extracellular matrix molecules that are sparsely dispersed, which do not represent their inherent microenvironmental characteristics, resulting in immature endothelial barrier functions.
View Article and Find Full Text PDFACS EST Air
January 2025
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
Due to the increased prevalence of plastic pollution globally, atmospheric deposition of microplastics (MPs) is a significant issue that needs to be better understood to identify potential consequences for human health. This study is the first to quantify and characterize atmospheric MP deposition in the Eastern United States. Passive sampling was conducted at two locations within the Eastern United States, specifically in remote South Central Appalachia, from March to September 2023.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2024
Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
Microplastics (MPs) are present in ambient air in a respirable size fraction; however, their potential impact on human health via inhalation routes is not well documented. In the present study, methods for a lab-scale generation of MPs from regularly used and littered plastic articles were optimized. The toxicity of 11 different types of MPs, both commercially purchased and in-lab prepared MPs, was investigated in lung epithelial cells using cell viability, immune and inflammatory response, and genotoxicity endpoints.
View Article and Find Full Text PDFHeliyon
June 2024
Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain.
The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment.
View Article and Find Full Text PDFSci Total Environ
June 2024
Magister Program of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Jalan Veteran 10-11, 65145 Malang, East Java, Indonesia.