98%
921
2 minutes
20
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c00540 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Life-like Materials and Systems, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
Transmembrane signaling is essential for cellular communication, yet reconstituting such mechanisms in synthetic systems remains challenging. Here, we report a simple and robust DNA-based mechanism for transmembrane signaling in synthetic cells using cholesterol-modified single-stranded DNA (Chol-ssDNA). We discovered that anchored Chol-ssDNA spontaneously flips across the membrane of giant unilamellar lipid vesicles (GUVs) in a nucleation-driven, defect-mediated process.
View Article and Find Full Text PDFJ Midwifery Womens Health
September 2025
College of Nursing, Research Institute of Nursing Innovation, Kyungpook National University, Daegu, South Korea.
Introduction: Given the rising number of studies on synthetic osmotic dilators, there is a lack of comprehensive reviews for their use compared with other commonly used cervical ripening methods. This study aimed to examine the maternal and neonatal safety and efficacy in cervical ripening and labor induction using synthetic osmotic dilators compared with pharmacologic agents (prostaglandin E, prostaglandin E, oxytocin) for labor induction.
Methods: A systematic review and meta-analysis of randomized controlled trials (RCTs) and cohort studies was conducted, using MEDLINE, Embase, CINAHL, and Cochrane Library databases search.
J Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDFInt J Pharm X
December 2025
Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
Intestinal inflammation particularly inflammatory bowel disease poses significant clinical challenges due to its chronic nature, limited treatment efficacy and adverse effects of conventional therapies like corticosteroids and biologics. Biomimetic nanocarriers have emerged as a transformative strategy to overcome these limitations by leveraging natural cell membranes for targeted drug delivery. This review critically examines the application of biomimetic nanocarriers as precision therapeutics for intestinal inflammation.
View Article and Find Full Text PDF