98%
921
2 minutes
20
Unlabelled: Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in patients with prostate cancer. Although underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in prostate cancer, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYB proto-oncogene like 2 (MYBL2) as a significantly enriched transcription factor in prostate cancer exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine prostate cancer cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in prostate cancer. Furthermore, high MYBL2 activity identifies prostate cancer that would be responsive to CDK2 inhibition.
Significance: Prostate cancers that escape therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic prostate cancer and implicates CDK2 inhibition as a novel therapeutic target for this most lethal subtype of prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368174 | PMC |
http://dx.doi.org/10.1158/2767-9764.CRC-24-0069 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Department of Pediatric, The University of Jordan.
Background: Rhabdomyosarcoma (RMS) typically responds well to a combination of treatments with favorable prognosis in children 1 to 9 years old. However, infants may fare worse due to receiving less aggressive local therapy for concerns about long-term effects of surgery/radiation. This study investigates the clinical characteristics, treatment approach, and survival outcomes of RMS in children under 2.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFClin Cancer Res
September 2025
University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
Human Kallikrein 2 (KLK2) is a prostate cancer tissue specific protein that is regulated by androgen receptor (AR) signaling. KLK2 was not previously recognized as a therapeutic target as it is secreted. It has now been demonstrated that KLK2 is expressed on the cell surface and targetable by various methodologies.
View Article and Find Full Text PDFInorg Chem
September 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India.
This study focuses on designing and developing a novel three-dimensional porphyrinic covalent organic framework (3D-Por-COF) to enhance anticancer sono-photodynamic therapy (SPDT). Leveraging the unique structural advantages of 3D COFs, this work addresses the limitations of traditional 2D-Por-COFs, particularly regarding reactive oxygen species (ROS) production and therapeutic efficacy. The newly developed 3D-Por-COF demonstrated significantly higher ROS generation under combined sonodynamic and photodynamic conditions, leading to an improved therapeutic effect against prostate cancer cells.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.