Article Synopsis

  • The thymus is crucial for adaptive immunity but shrinks with age, leading to weaker immune responses.
  • Researchers identified two new types of thymic epithelial cells (TECs) in aging that form dense clusters and lack thymocytes, worsening with age.
  • This study reveals how these age-associated TECs disrupt regeneration and repair processes in the thymus, potentially guiding future therapies to enhance immunity in older adults.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362016PMC
http://dx.doi.org/10.1038/s41590-024-01915-9DOI Listing

Publication Analysis

Top Keywords

age-related epithelial
4
epithelial defects
4
defects limit
4
thymic
4
limit thymic
4
thymic function
4
function regeneration
4
regeneration thymus
4
thymus essential
4
essential establishing
4

Similar Publications

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF

Purpose: To evaluate visual, anatomical and safety outcomes of aflibercept 8 mg in previously treated patients with neovascular age-related macular degeneration (nAMD).

Methods: This retrospective study included nAMD patients switched to aflibercept 8 mg from prior anti-VEGF therapies at Sahlgrenska University Hospital between February 2024 and February 2025. Data on best-corrected visual acuity (BCVA), central retinal thickness (CRT), pigment epithelial detachment (PED) height, fluid status, treatment intervals, time to fluid recurrence and adverse events were collected.

View Article and Find Full Text PDF

[Cellular models of inflammation in the posterior segment of the eye: exploring pathogenic mechanisms].

Med Sci (Paris)

September 2025

Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada - CUO-Recherche, Médecine régénératrice, Centre de recherche du CHU de Québec - Université Laval, Québec, Canada.

Glaucoma, age-related macular degeneration, and diabetic retinopathy are complex eye diseases that involve inflammation. Several cellular models are developed to study inflammation mechanisms in the posterior segment of the eye. These models, are composed of cells of various origins (human or animal), derived from different tissues (retina, choroid, skin, and umbilical cord) and belonging to different cell types (epithelial, endothelial, vascular, and neuronal).

View Article and Find Full Text PDF

Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.

Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.

View Article and Find Full Text PDF

Unlabelled: Automated analysis of optical coherence tomography (OCT) biomarkers improves the prediction of results of loading anti-VEGF therapy of vascular pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (nAMD).

Objective: This study evaluated the effectiveness of OCT biomarker analysis algorithm in predicting the anatomical outcomes of loading anti-VEGF therapy for vascular PED in nAMD.

Material And Methods: OCT scans performed prior to loading anti-VEGF therapy were analyzed using the algorithm in 69 treatment-naïve nAMD patients (70 eyes) with vascular PED exceeding 200 µm in height.

View Article and Find Full Text PDF