98%
921
2 minutes
20
In root research, hydroponic plant cultivation is commonly used and soil experiments are rare. We investigated the response of 12-day-old barley roots, cultivated in soil-filled rhizotrons, to different soil water potentials (SWP) comparing a modern cultivar (cv. Scarlett) with a wild accession ICB181243 from Pakistan. Water potentials were quantified in soils with different relative water contents. Root anatomy was studied using histochemistry and microscopy. Suberin and lignin amounts were quantified by analytical chemistry. Transcriptomic changes were observed by RNA-sequencing. Compared with control with decreasing SWP, total root length decreased, the onset of endodermal suberization occurred much closer towards the root tips, amounts of suberin and lignin increased, and corresponding biosynthesis genes were upregulated in response to decreasing SWP. We conclude that decreasing water potentials enhanced root suberization and lignification, like osmotic stress experiments in hydroponic cultivation. However, in soil endodermal cell suberization was initiated very close towards the root tip, and root length as well as suberin amounts were about twofold higher compared with hydroponic cultivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15067 | DOI Listing |
J Fish Dis
September 2025
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong
Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.
View Article and Find Full Text PDFCurr Comput Aided Drug Des
September 2025
Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, U.P, 201306, India.
Introduction: The white water lily (Nymphaea alba) is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of Nymphaea alba flower extract (NAFE) using both in vitro and in vivo models, as well as computational network analysis.
View Article and Find Full Text PDFChemphyschem
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.
View Article and Find Full Text PDFWater Res
August 2025
Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.
Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDF