98%
921
2 minutes
20
The massive production and application of nanomaterials (NMs) have raised concerns about the potential adverse effects of NMs on human health and the environment. Evaluating the adverse effects of NMs by laboratory methods is expensive, time-consuming, and often fails to keep pace with the invention of new materials. Therefore, methods that utilize machine learning techniques to predict the toxicity potentials of NMs are a promising alternative approach if regulatory confidence in them can be enhanced. Previous reviews and regulatory OECD guidance documents have discussed in detail how to build an predictive model for NMs. Nevertheless, there is still room for improvement in addressing the ways to enhance the model representativeness and performance from different angles, such as data set curation, descriptor selection, task type (classification/regression), algorithm choice, and model evaluation (internal and external validation, applicability domain, and mechanistic interpretation, which is key to ensuring stakeholder confidence). This review explores how to build better predictive models; the current state of the art is analyzed via a statistical evaluation of literature, while the challenges faced and future perspectives are summarized. Moreover, a recommended workflow and best practices are provided to help in developing more predictive, reliable, and interpretable models that can assist risk assessment as well as safe-by-design development of NMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c03328 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.