Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The importance of the DNA damage response in mediating effects of radiotherapy (RT) has galvanized efforts to target this pathway with radiosensitizers. Yet early clinical trials of this approach have failed to yield a benefit in unselected populations. We hypothesized that ataxia-telangiectasia mutated (Atm)-null tumors would demonstrate genotype-specific synergy between RT and an inhibitor of the DNA damage response protein ataxia-telangiectasia and Rad3-related (ATR) kinase.

Experimental Design: We investigated the synergistic potential of the ATR inhibitor (ATRi) RP-3500 and RT in two Atm-null and isogenic murine models, both in vitro and in vivo. Staining of γ-H2AX foci, characterization of the immune response via flow cytometry, and tumor rechallenge experiments were performed to elucidate the mechanism of interaction. To examine genotype specificity, we tested the interaction of ATRi and RT in a Brca1-null model. Finally, patients with advanced cancer with ATM alterations were enrolled in a phase I/II clinical trial to validate preclinical findings.

Results: Synergy between RP-3500 and RT was confirmed in Atm-null lines in vitro, characterized by an accumulation of DNA double-strand breaks. In vivo, Atm-null tumor models had higher rates of durable control with RT and ATRi than controls. In contrast, there was no synergy in tumors lacking Brca1. Analysis of the immunologic response indicated that efficacy is largely mediated by cell-intrinsic mechanisms. Lastly, early results from our clinical trial showed complete responses in patients.

Conclusions: Genotype-directed radiosensitization with ATRi and RT can unleash significant therapeutic benefit and could represent a novel approach to develop more effective combinatorial synthetic cytotoxic RT-based treatments. See related commentary by Schrank and Colbert, p. 5505.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702853PMC
http://dx.doi.org/10.1158/1078-0432.CCR-24-0154DOI Listing

Publication Analysis

Top Keywords

dna damage
8
damage response
8
early clinical
8
clinical trial
8
genotype-directed synthetic
4
synthetic cytotoxicity
4
cytotoxicity atr
4
atr inhibition
4
inhibition radiotherapy
4
radiotherapy purpose
4

Similar Publications

The anti-HER2 antibody‒drug conjugate (ADC) DS-8201 presents new hope for patients with advanced HER2-positive tumors. Its clinical application, however, is hindered by serious adverse reactions and reduced efficacy following long-term treatment. In this study, we investigated the factors influencing the sensitivity of DS-8201 and developed effective combination regimens to optimize its therapeutic efficacy.

View Article and Find Full Text PDF

Unveiling Condensed Aromatic Amines as Noteworthy Genotoxic Components in PM Dissolved Organic Matter.

Environ Sci Technol

September 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

The potential of PM to cause lung cancer has been well established; however, evidence regarding which specific components are responsible remains limited. We investigated dissolved organic matter (DOM) in PM using high-resolution mass spectrometry (HRMS) and cellular DNA damage assays to elucidate molecular composition and sources of carcinogenic components. Our analysis revealed hundreds of genotoxic compounds, with condensed aromatic amines predominating in number, abundance, and contribution to overall genotoxicity.

View Article and Find Full Text PDF

Insufficient telomeric DNA damage response promotes chromosomal instability in aged oocytes.

Sci Bull (Beijing)

August 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen Univ

Increased chromosomal instability impairs oocyte quality, contributing to female reproductive aging. The telomeric DNA damage response (DDR) is essential for genomic stability; however, how oocytes respond to telomeric damage remains elusive. Here, we observed that aged human germinal vesicle (GV) oocytes accumulated telomeric DNA damage.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Differential effects of mercury compounds on mutagenicity, genotoxicity and repair of UV-DNA damage.

Toxicology

September 2025

Brown University, Department of Pathology and Laboratory Medicine, Providence, RI 02903, USA. Electronic address:

Mercury (Hg) is a global contaminant that is present in human diet as methylmercury (MeHg). Recent studies linked MeHg exposure with high risks of skin cancers. It is unknown whether MeHg is directly genotoxic in skin cells or able to enhance mutagenic effects of UV radiation.

View Article and Find Full Text PDF