Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Proteins, which are ubiquitous in cells and critical to almost all cellular functions, are indispensable for life. Fluorescence imaging of proteins is key to understanding their functions within their native milieu, as it provides insights into protein localization, dynamics, and trafficking in living systems. Consequently, the selective labeling of target proteins with fluorophores has emerged as a highly active research area, encompassing bioorganic chemistry, chemical biology, and cell biology. Various methods for selectively labeling proteins with fluorophores in cells and tissues have been established and are continually being developed to visualize and characterize proteins. This review highlights research findings reported since 2018, with a focus on the selective labeling of cellular proteins with small organic fluorophores and their biological applications in studying protein-associated biological events. We also discuss the strengths and weaknesses of each labeling approach for their utility in living systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cs00094cDOI Listing

Publication Analysis

Top Keywords

labeling cellular
8
cellular proteins
8
biological applications
8
living systems
8
selective labeling
8
proteins fluorophores
8
proteins
7
labeling
5
selective fluorescent
4
fluorescent labeling
4

Similar Publications

IntroductionDaratumumab is a therapeutic cornerstone of the management of multiple myeloma, exerting its anti-myeloma activity through targeting of the cell surface glycoprotein CD38 on plasma cells. While originally given intravenously, the subcutaneous formulation, daratumumab hyaluronidase injection (Dara SC), has been associated with non-inferior efficacy and lower infusion-related reaction rates (IRRs) in the treatment of multiple myeloma and light chain amyloidosis. A noted benefit of Dara SC is a short administration time; however, the optimal observation time post injection to ensure patient safety is unclear from the drug labeling.

View Article and Find Full Text PDF

Live-cell imaging of intracellular proteins enables real-time observation of protein dynamics under near-physiological conditions, providing pivotal insights for both fundamental life science research and medical applications. However, due to limitations such as poor probe permeability and cytotoxicity associated with conventional antibody-based or genetically encoded labeling techniques, live-cell imaging remains a significant challenging. To address these limitations, here in this study, we developed and rigorously validated a novel aptamer-based fluorescent probe for real-time imaging of NEK9 kinase in living cells.

View Article and Find Full Text PDF

Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.

View Article and Find Full Text PDF

Labeling the plasma membrane for advanced imaging remains a significant challenge. For time-lapse live cell imaging, probe internalization and photobleaching are major limitations affecting most membrane-specific dyes. In fixed or permeabilized cells, many membrane probes either lose signal after fixation or fail to remain localized to the plasma membrane.

View Article and Find Full Text PDF

Objective: To assess the safety and tolerability of intravitreal injection of human retinal progenitor cells (RPCs) at multiple dose levels in adults with non-syndromic retinitis pigmentosa (RP).

Design: A prospective, multicenter, open-label, single-arm, Phase I/IIa safety study of RPCs in adults with RP ( = 28). Two patient cohorts were studied: Cohort 1: BCVA no better than 20/200 and no worse than Hand Motions, and Cohort 2: BCVA no better than 20/40 and no worse than 20/200).

View Article and Find Full Text PDF