Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of novel energetic compounds constitutes a pivotal research direction within the field of energetic materials. However, exploring the intricate relationship between their molecular structure and properties, in order to uncover their potential applications, remains a challenging endeavor. Therefore, employing multi-molecule assembly techniques to modulate the structure and performance of energetic materials holds immense significance. This approach enables the creation of a new generation of energetic materials, fueling research and development efforts in this field. In this study, a series of coordination compounds are synthesized by utilizing tetranitroethide (TNE) as an anion, which possesses a high nitrogen and oxygen content. The synthesis involves the synergistic modification between metal ions and small molecule ligands. Characterization of the obtained compounds is carried out using various techniques, including single crystal X-ray diffraction, IR spectroscopy, elemental analysis, and simultaneous TG-DSC analysis. Additionally, the energy of formation for these compounds is calculated using bomb calorimetry, based on the heat of combustion. The detonation performances of the compounds are determined through calculations using the EXPLO 5 software, and their sensitivities to external stimuli are evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt00830hDOI Listing

Publication Analysis

Top Keywords

energetic materials
12
structure performance
8
energetic
5
compounds
5
performance regulation
4
regulation energetic
4
energetic complexes
4
complexes multifunctional
4
multifunctional molecular
4
molecular self-assembly
4

Similar Publications

First-principles insights into structure and magnetism in ultra-small tetrahedral iron oxide nanoparticles.

Phys Chem Chem Phys

September 2025

Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.

Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.

View Article and Find Full Text PDF

Unlocking Hydrogen Spillover: Dynamic Behavior and Advanced Applications.

Acc Chem Res

September 2025

Division of Materials and Manufacturing Science, Graduate School of Engineering, The University of Osaka, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.

ConspectusHydrogen spillover, the simultaneous diffusion of protons and electrons, has recently emerged as a key phenomenon in the functionalization of hydrogen in cutting-edge research fields. Its occurrence has been found to significantly impact hydrogen-related fields of science, such as catalysis, reduction, and hydrogen storage. Since the discovery of hydrogen spillover more than half a century ago, although many scientists have reported its unique properties and have attempted to utilize them, no practical advanced applications have been established yet.

View Article and Find Full Text PDF

The design and synthesis of advanced energetic non-hydrogen 1,2,5-oxadiazole assemblies were realized. All target azo-1,2,5-oxadiazole assemblies have high densities (1.89-1.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.

View Article and Find Full Text PDF

Accurately modeling volume-dependent properties of water remains a challenge for density functional theory (DFT), with widely used functionals failing to reproduce key features of the water density isobar, including its shape, density, and temperature of the density maximum. Here, we compare the performance of the RPBE-D3 and vdW-DF-cx functionals using replica exchange molecular dynamics (MD) driven by machine-learned force fields. Our simulations reveal that vdW-DF-cx predicts the water density more accurately than RPBE-D3 and reproduces the isobar closely between 307 and 340 K.

View Article and Find Full Text PDF