Colony-stimulating factor 2 (CSF2) as a gut microbiome dependent immune factor that alters molecular and behavioral responses to cocaine in male mice.

Brain Behav Immun

Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Translational Neuroscience, Wake Forest University School of Medicin

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cocaine use disorder is a condition that leads to tremendous morbidity and mortality for which there are currently no FDA-approved pharmacotherapies. Previous research has demonstrated an important role for the resident population of bacteria of the large intestine, collectively dubbed the gut microbiome, in modulating brain and behavior in models of cocaine and other substance use disorders. Importantly, previous work has repeatedly shown that depletion of the gut microbiome leads to increased cocaine taking and seeking behaviors in multiple models. While the precise mechanism of these gut-brain signaling pathways in models of cocaine use is not fully clear, and intriguing possibility is through gut microbiome influences on innate immune system function. In this manuscript we identify the cytokine colony stimulating factor 2 (CSF2) as an immune factor that is increased by cocaine in a gut microbiome dependent manner. Peripherally injected CSF2 crosses the blood-brain barrier into the nucleus accumbens, a brain region central to behavioral responses to cocaine. Treatment with peripheral CSF2 reduces acute and sensitized locomotor responses to cocaine as well as reducing cocaine place preference at high doses. On a molecular level, we find that peripheral injections of CSF2 alter the transcriptional response to both acute and repeated cocaine in the nucleus accumbens. Finally, treatment of microbiome depleted mice with CSF2 reverses the behavioral effects of microbiome depletion on the conditioned place preference assay. Taken together, this work identifies an innate immune factor that represents a novel gut-brain signaling cascade in models of cocaine use and lays the foundations for further translational work targeting this pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831408PMC
http://dx.doi.org/10.1016/j.bbi.2024.08.003DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
immune factor
12
responses cocaine
12
models cocaine
12
cocaine
11
factor csf2
8
microbiome dependent
8
behavioral responses
8
increased cocaine
8
gut-brain signaling
8

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

The multi-kingdom cancer microbiome.

Nat Microbiol

September 2025

Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.

Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.

View Article and Find Full Text PDF