PTIP epigenetically regulates DNA damage-induced cell cycle arrest by upregulating PRDM1.

Sci Rep

Field of Human Disease Models, Major in Advanced Life Sciences and Medicine,, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The genome is constantly exposed to DNA damage from endogenous and exogenous sources. Fine modulation of DNA repair, chromatin remodeling, and transcription factors is necessary for protecting genome integrity, but the precise mechanisms are still largely unclear. We found that after ionizing radiation (IR), global trimethylation of histone H3 at lysine 4 (H3K4me3) was decreased at an early (5 min) post-IR phase but increased at an intermediate (180 min) post-IR phase in both human and mouse hematopoietic cells. We demonstrated that PTIP, a component of the MLL histone methyltransferase complex, is required for H3K4me3 upregulation in the intermediate post-IR phase and promotes cell cycle arrest by epigenetically inducing a cell cycle inhibitor, PRDM1. In addition, we found that PTIP expression is specifically downregulated in acute myeloid leukemia patients. These findings collectively suggest that the PTIP-PRDM1 axis plays an essential role in proper DNA damage response and its deregulation contributes to leukemogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297997PMC
http://dx.doi.org/10.1038/s41598-024-68295-wDOI Listing

Publication Analysis

Top Keywords

cell cycle
12
post-ir phase
12
cycle arrest
8
dna damage
8
ptip epigenetically
4
epigenetically regulates
4
dna
4
regulates dna
4
dna damage-induced
4
damage-induced cell
4

Similar Publications

Radiotherapy, a pivotal treatment for colorectal cancer, is compromised by tumor repopulation, which is characterized by accelerated growth and increased treatment resistance. Although radiation-induced DNA breaks eliminate most cells, a subset of polyploid giant cancer cells (PGCCs) evade death through massive genomic amplification, subsequently undergoing depolyploidization via a viral budding-like process to generate proliferative progeny. Critically, these PGCCs drive tumor repopulation and underpin therapeutic failure.

View Article and Find Full Text PDF

Murine double minute 2 (MDM2, also known as human double minute 2 or HDM2) is a negative regulator of the tumor suppressor protein p53 and is overexpressed in many cancers. Over the past two decades, substantial progress has been made in developing inhibitors of the MDM2-p53 interaction, thereby allowing the p53 protein to exert antitumor effects through cell apoptosis and cycle arrest. While there are currently no FDA-approved MDM2 inhibitors available, several small molecule MDM2 inhibitors and a stapled peptide inhibitor of the MDM2-p53 interaction are in clinical development.

View Article and Find Full Text PDF

A covalent inhibitor targeting Cys16 on RhoA in colorectal cancer.

Cell Chem Biol

September 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Centre for Oncology and Im

RhoA is a key cancer driver and potential colorectal cancer (CRC) therapy target but remains undrugged clinically. Using activity-based protein profiling (ABPP) and mass spectrometry (MS), we identified CL16, a covalent inhibitor targeting the unique Cys16 on RhoA subfamily, which confers high specificity over other Rho family proteins. Cys16 is adjacent to the nucleotide-binding pocket and switch regions, which are critical for RhoA function.

View Article and Find Full Text PDF

Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.

View Article and Find Full Text PDF

Novel Thioredoxin reductase 1 inhibitor BS1801 relieves treatment resistance and triggers endoplasmic reticulum stress by elevating reactive oxygen species in glioma.

Redox Biol

August 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target

Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.

View Article and Find Full Text PDF