98%
921
2 minutes
20
Hexavalent chromium (Cr (VI)) is a heavy metal that is distributed globally and poses a significant threat to the environment through various mechanisms. It can react with soil and water, leading to severe environmental damage. In this study, the toxicity of Cr (VI) was investigated by analyzing two major cyanobacteria species, Nostoc commune and Anabaena variabilis, commonly found in soil along with their consortia. The findings revealed that the toxicity mechanisms of Cr (VI) differed in individual monocultures, with Cr (VI) competing with various components. However, when the cyanobacteria species were combined, i.e., in consortia, they demonstrated an impressive retention of their functioning even in Cr (VI) concentration at 10 ppm. The study also concluded that non-photochemical quenching played a critical role in minimizing Cr (VI) toxicity. Furthermore, the research examined the role of the S-cycle in the process. The quantum yield of electron flux revealed that the Cr (VI) was competing with Qa in A. variabilis and with Qb in N. commune, albeit the photosystem dysfunction is only visible in the latter. The mechanism seemed to be quantum tunneling alteration because of the Cr (VI) having different energized quantum wells. The consortia proved to be behaving in a better manner as compared to the control. Overall, this study reveals the mode of toxicity of Cr (VI) in these two important cyanobacterial strains as well as it also discusses the mechanism of tolerance of consortia against Cr (VI) toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-34589-9 | DOI Listing |
Glob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFiScience
September 2025
Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.
View Article and Find Full Text PDFEnviron Epigenet
May 2025
Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, United States.
Many organisms have adapted to survive anoxic or hypoxic environments, but the epigenetic responses involved in this successful stress response are not well described in most species. Embryos of the annual killifish have the greatest tolerance to anoxia of all vertebrates, making them a powerful model to study the cellular mechanisms necessary for anoxia tolerance. However, the global histone landscape of this species has never been quantified or explored in relation to stress tolerance.
View Article and Find Full Text PDFCureus
August 2025
Department of Urology, The Institute of Medical Science, The University of Tokyo, Tokyo, JPN.
In patients with advanced urothelial carcinoma who have progressed after platinum-based chemotherapy, enfortumab vedotin (EV) improves overall survival compared to standard chemotherapy. Additionally, for treatment-naïve patients with locally advanced or metastatic urothelial carcinoma, the combination of pembrolizumab and EV demonstrates superior efficacy over platinum-based chemotherapy. Hence, EV becomes a standard treatment option.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.
View Article and Find Full Text PDF