Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic engineering provides a powerful approach to efficiently produce valuable compounds, with the aid of emerging gene editing tools and diverse metabolic regulation strategies. However, apart from the current known biochemical pathway information, a variety of unclear constraints commonly limited the optimization space of cell phenotype. Hydroxytyrosol is an important phenolic compound that serves various industries with prominent health-beneficial properties. In this study, the inverse metabolic engineering based on metabolome analysis was customized and implemented to disclose the hidden rate-limiting steps and thus to improve hydroxytyrosol production in Saccharomyces cerevisiae (S. cerevisiae). The potential rate-limiting steps involved three modules that were eliminated individually via reinforcing and balancing metabolic flow, optimizing cofactor supply, and weakening the competitive pathways. Ultimately, a 118.53 % improvement in hydroxytyrosol production (639.84 mg/L) was achieved by inverse metabolic engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131187DOI Listing

Publication Analysis

Top Keywords

metabolic engineering
16
inverse metabolic
12
engineering based
8
saccharomyces cerevisiae
8
rate-limiting steps
8
hydroxytyrosol production
8
metabolic
5
engineering
4
based metabonomics
4
metabonomics efficient
4

Similar Publications

Background: The CRP-albumin-lymphocyte (CALLY) index has potential clinical value as a novel marker integrating inflammatory, nutritional and immune status in the development of colorectal polyps. This study examined whether gender factors influence the association between CALLY and colorectal polyps; in addition to elucidating whether metabolic pathways mediate this relationship.

Methods: This is a cross-sectional study including 5409 adult health screening participants who completed colonoscopy.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.

View Article and Find Full Text PDF

Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.

View Article and Find Full Text PDF

This study investigated the inhibitory effect of sucrose on the autolysis of recombinant Bacillus subtilis WB600 during keratinase production and elucidated its mechanism. Growth curves, cell morphology observations, cell wall integrity detection, and transcriptome analysis revealed that 2 % sucrose significantly increased cell biomass and delayed autolysis. Keratinase activity reached 5670.

View Article and Find Full Text PDF