A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimizing the Recovery of Rare Earth Elements from Spent Fluorescent Lamps by Living sp. | LitMetric

Optimizing the Recovery of Rare Earth Elements from Spent Fluorescent Lamps by Living sp.

ACS Sustain Resour Manag

LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Given the significant industrial applications of rare earth elements (REEs), supply chain constraints, and negative environmental impacts associated with their extraction, finding alternative sources has become a critical challenge. Previously, we highlighted the potential of living sp. in the removal and pre-concentration of Y from a solution obtained by sequential acid leaching of spent fluorescent lamps (SFLs). Here, we extended that study to other REEs extracted from SFLs and evaluated the effect of pH (4.5-9.0), light exposure (absence, natural and supplemented with artificial light), and Hg (presence and absence). The results showed small differences in the removal of Y (23-30%) and other REEs at the different pH values, opening the scope of the methodology. However, sp. relative growth rate (RGR) was negatively affected in the higher acidity condition, without any visible signs of decay. In the absence of light, the RGR also decreased, which was accompanied by a halving of the removal efficiency compared to that with artificial light supplementation (40% for Y). Although Hg had minimal influence on the removal and concentration of REEs by sp., its presence in the enriched biomass is undesirable. Therefore, this contaminant was selectively removed from the solution using FeO@SiO/SiDTC nanoparticles before contact with the macroalgae (70% removal in 30 min; 99% in 72 h). In addition to easy solubilization, macroalgae enriched with REEs have a simpler composition compared to SFLs. Calcination of the biomass allowed the REEs to be further concentrated, with concentrations (130 mg/g for Y) up to 240 times higher than in typical apatite ore. This highlights enriched biomass as a sustainable alternative to traditional mining for obtaining these critical raw materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285805PMC
http://dx.doi.org/10.1021/acssusresmgt.4c00104DOI Listing

Publication Analysis

Top Keywords

rare earth
8
earth elements
8
spent fluorescent
8
fluorescent lamps
8
artificial light
8
enriched biomass
8
rees
6
removal
5
optimizing recovery
4
recovery rare
4

Similar Publications