Polyoxometalates: metallodrug agents for combating amyloid aggregation.

Natl Sci Rev

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is a devastating neurodegenerative disease that affects ∼50 million people globally. The accumulation of amyloid-β (Aβ) plaques, a predominant pathological feature of AD, plays a crucial role in AD pathogenesis. In this respect, Aβ has been regarded as a highly promising therapeutic target for AD treatment. Polyoxometalates (POMs) are a novel class of metallodrugs being developed as modulators of Aβ aggregation, owing to their negative charge, polarity, and three-dimensional structure. Unlike traditional discrete inorganic complexes, POMs contain tens to hundreds of metal atoms, showcasing remarkable tunability and diversity in nuclearities, sizes, and shapes. The easily adjustable and structurally variable nature of POMs allows for their favorable interactions with Aβ. This mini-review presents a balanced overview of recent progress in using POMs to mitigate amyloidosis. Clear correlations between anti-amyloid activities and structural features of POMs are also elaborated in detail. Finally, we discuss the current challenges and future prospects of POMs in combating AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288190PMC
http://dx.doi.org/10.1093/nsr/nwae226DOI Listing

Publication Analysis

Top Keywords

poms
6
polyoxometalates metallodrug
4
metallodrug agents
4
agents combating
4
combating amyloid
4
amyloid aggregation
4
aggregation alzheimer's
4
alzheimer's disease
4
disease devastating
4
devastating neurodegenerative
4

Similar Publications

Background: Multiple sclerosis (MS) is the most common neuroimmunological disease in young adults. Data on its clinical onset before the age of 18 (paediatric-onset MS (POMS)) are limited.

Methods: This observational study present data on >1000 POMS compared with adult-onset MS (AOMS) and analysed patients regarding diagnostic delay, initial symptoms and long-term outcome using generalised additive models and adjustment for relevant confounders.

View Article and Find Full Text PDF

Novel development of lipid-based formulations: Improved wettability and homogeneous API solid dispersion visualised via near-infrared hyperspectral imaging.

Eur J Pharm Biopharm

September 2025

Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Department of Pharmaceutical, Technology and Biopharmacy, Graz, Austria. Electronic address:

Lipid-based formulations have been successfully applied to improve the aqueous solubility of active pharmaceutical ingredients (APIs), however, with the bottleneck of limited wettability of the system. In this study, a lipid-based system was developed using polyglycerol ester of fatty acids (PGFA) as the main component and hexaglycerol (PG6) as a wetting agent. Felodipine, a BCS class II compound was selected as a model API.

View Article and Find Full Text PDF

Electrochemical sensors capable of detecting different types of biomolecules using a single electrode are highly desirable for simplifying analytical platforms and expanding their practical applicability. Herein, we develop a multifunctional electrochemical sensor based on a 3D honeycomb-like porous rGO/PPy-POM composite film for the independent detection of dopamine (DA) and folic acid (FA), two chemically distinct and clinically relevant biomolecules. The electrode is fabricated through a facile, low-cost, and environmentally friendly breath figure method to create a 3D porous reduced graphene oxide (rGO) framework, followed by codeposition of polypyrrole (PPy) and polyoxometalates (POMs).

View Article and Find Full Text PDF

Recent research progress in polyoxometalate-based composite materials applied to electrochemical biosensors for biomolecule detection.

Nanoscale

September 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng Henan 475004, China.

Polyoxometalates (POMs), as a class of well-known metal-oxygen cluster materials, have exhibited exceptional multi-electron redox activity, reversible electron transfer capabilities and structural tunability, which render them promising candidates as electrode modification materials for electrochemical biosensors (ECBSs). To further enhance their performances, POMs are often combined with conductive materials to form POM-based composite materials (POMCMs). These POMCMs synergistically improve electron transport efficiency, stabilize biological recognition elements and amplify electrochemical signals, thereby significantly enhancing the sensitivity and selectivity of ECBSs.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are nanoscale, structurally versatile metal-oxo clusters with emerging applications in sustainability, energy, nanoelectronics, and life science technologies. Owing to their structural complexity, some all-inorganic POMs are often perceived as serendipitous outcomes from self-assembly processes, which poses challenges for scalable rational design. From this perspective, we therefore examine how the development of POM informatics and, more generally, data-driven POM exploration can pave the way for the molecular engineering of new POM-based materials targeting customized applications.

View Article and Find Full Text PDF