Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, we employ polymer physics models of chromatin to investigate the 3D folding of a 2Mb wide genomic region encompassing the human gene, a crucial DNA locus involved in key cellular functions. Through extensive Molecular Dynamics simulations, we reconstruct in-silico the ensemble of single-molecule 3D structures, which we benchmark against recent in-situ Hi-C 2.0 data. The model-derived single molecules are then used to predict structural folding features at the single-cell level, providing testable predictions for super-resolution microscopy experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275793PMC
http://dx.doi.org/10.1101/2024.07.16.603769DOI Listing

Publication Analysis

Top Keywords

polymer physics
8
physics models
8
structural folding
8
folding features
8
models reveal
4
reveal structural
4
features single-molecule
4
single-molecule gene
4
gene chromatin
4
chromatin conformations
4

Similar Publications

Many Will Enter, Few Will Win: Cost and Sensitivity of Exploratory Dynamics.

Biophys J

September 2025

Department of Physics and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

A variety of biomolecular systems rely on exploratory dynamics to reach target locations or states within a cell. Without a mechanism to remotely sense and move directly towards a target, the system must sample over many paths, often including resetting transitions back to the origin. We investigate how exploratory dynamics can confer an important functional benefit: the ability to respond to small changes in parameters with large shifts in the steady-state behavior.

View Article and Find Full Text PDF

Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif.

View Article and Find Full Text PDF

Cicada rib-inspired tough films through nanoconfined crystallization for use in acoustic transducers.

Sci Adv

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.

Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.

View Article and Find Full Text PDF

In view of Corona pandemic, scientists have taken significant efforts to study and recognize the peculiarities of the SARS-CoV-2 outbreak in order to prevent it from spreading. It was discovered that the virus is spreading in many places and nations that have made significant progress in addressing environmental pollution or are not subject to dusty storms. Infections are growing again in the same country, with varied densities of sick persons depending on the weather and windy season.

View Article and Find Full Text PDF

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF