Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Study Design: A systemic review and a meta-analysis. We also provided a retrospective cohort for validation in this study.

Objective: (1) Using a meta-analysis to determine the pooled discriminatory ability of The Skeletal Oncology Research Group (SORG) classical algorithm (CA) and machine learning algorithms (MLA); and (2) test the hypothesis that SORG-CA has less variability in performance than SORG-MLA in non-American validation cohorts as SORG-CA does not incorporates regional-specific variables such as body mass index as input.

Methods: After data extraction from the included studies, logit-transformation was applied for extracted AUCs for further analysis. The discriminatory abilities of both algorithms were directly compared by their logit (AUC)s. Further subgroup analysis by region (America vs non-America) was also conducted by comparing the corresponding logit (AUC).

Results: The pooled logit (AUC)s of 90-day SORG-CA was .82 (95% confidence interval [CI], .53-.11), 1-year SORG-CA was 1.11 (95% CI, .74-1.48), 90-day SORG-MLA was 1.36 (95% CI, 1.09-1.63), and 1-year SORG-MLA was 1.57 (95% CI, 1.17-1.98). All the algorithms performed better in United States than in Taiwan ( < .001). The performance of SORG-CA was less influenced by a non-American cohort than SORG-MLA.

Conclusion: These observations might highlight the importance of incorporating region-specific variables into existing models to make them generalizable to racially or geographically distinct regions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/21925682231162817DOI Listing

Publication Analysis

Top Keywords

machine learning
8
logit aucs
8
sorg-ca
5
comparison classically
4
classically machine
4
learning generated
4
generated survival
4
survival prediction
4
prediction models
4
models patients
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF