Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remain unknown.

Methods: We acquired diffusion-weighted magnetic resonance images to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naïve individuals with first-episode psychosis (15-25 years, 46% female) and a demographically matched sample of 27 control participants. Clinical follow-up data were also acquired in patients 3 and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modeling to predict longitudinal change in symptoms and functioning.

Results: Individuals with first-episode psychosis showed disrupted connectivity in a brainwide network linking all brain regions compared with controls (familywise error-corrected p = .03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r = 0.44, familywise error-corrected p = .041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes.

Conclusions: Brainwide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to 1 year after engagement with treatment services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2024.07.016DOI Listing

Publication Analysis

Top Keywords

structural connectivity
16
first-episode psychosis
12
connectivity
9
psychotic illness
8
brain regions
8
individuals first-episode
8
familywise error-corrected
8
error-corrected p =
8
brainwide anatomical
4
anatomical connectivity
4

Similar Publications

The claustrum (CLA) is a thin and elongated brain structure that is located between the insula and lateral striatum and is implicated in a wide range of behaviors. It is characterized by its extensive synaptic connectivity with multiple cortical regions. While CLA projection neurons are glutamatergic, several studies have shown an inhibitory impact of CLA on its cortical targets, suggesting the involvement of inhibitory cortical interneurons.

View Article and Find Full Text PDF

This study aims to tackle the tracking control problem of multiple unmanned surface vessels (USVs). It considers the impact of connectivity-hybrid cyber-attacks in the networked level, and wave-induced disturbances, as well as severe and nonsevere unified modeling rudder angle faults in the physical level. To do this, the study establishes USV models, taking into account actuator fault and cyber-attack modeling.

View Article and Find Full Text PDF

This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.

View Article and Find Full Text PDF

It has been suggested that episodic memory relies on the well-studied machinery of spatial memory. This influential notion faces hurdles that become evident with dynamically changing spatial scenes and an immobile agent. Here I propose a model of episodic memory that can accommodate such episodes via temporal indexing.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF