98%
921
2 minutes
20
Scaffolds play a key role in cultured meat production by providing an optimal environment for efficient cell attachment, growth, and development. This study investigated the effects of gelatin coating on the adhesion, proliferation, and adipogenic differentiation of adipose tissue-derived stem cells (ADSCs) cultured on soy protein-agarose scaffolds. Gelatin-coated scaffolds were prepared using 0.5% and 1.0% (/) gelatin solutions. The microstructure, water absorption rate, mechanical strength, cytotoxicity, cell adhesion, proliferation, and differentiation capabilities of the scaffolds were analyzed. Field emission scanning electron microscopy revealed the porous microstructure of the scaffolds, which was suitable for cell growth. Gelatin-coated scaffolds exhibited a significantly higher water absorption rate than that of non-coated scaffolds, indicating increased hydrophilicity. In addition, gelatin coating increased the mechanical strength of the scaffolds. Gelatin coating did not show cytotoxicity but significantly enhanced cell adhesion and proliferation. The gene expression levels of peroxisome proliferator-activated receptor gamma, CCAT/enhancer-binding protein alpha, and fatty acid-binding protein 4 were upregulated, and lipid accumulation was increased by gelatin coating. These findings suggest that gelatin-coated scaffolds provide a supportive microenvironment for ADSC growth and differentiation, highlighting their potential as a strategy for the improvement of cultured meat production and adipose tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11276222 | PMC |
http://dx.doi.org/10.3390/foods13142247 | DOI Listing |
FASEB J
September 2025
Department of Plastic Surgery and Burn, Third XiangYa Hospital, Central South University, Changsha, Hunan, China.
Defective wounds pose health risks, and treatment is challenging. Umbilical cord-derived mesenchymal stem cells (UCMSCs) show promise for healing. Primary UCMSCs were isolated and extracted in vitro, and the proliferation and differentiation characteristics were detected by flow cytometry and trilineage differentiation, and a 3D spherical cell culture was performed.
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFPLoS One
September 2025
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.
The short lifespan of polymorphonuclear neutrophils (PMNs) in vitro poses challenges, as their limited viability restricts functional assays and experimental manipulations. The HL-60 cell line serves as a valuable model for neutrophil-like differentiation, yet the functional relevance of ATRA- and DMSO-induced differentiation remains incompletely understood. In the present study, we aimed to characterize the differentiation potential of all-trans retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) on HL-60 cells and compare their functionality with primary PMNs.
View Article and Find Full Text PDFBiomater Sci
September 2025
College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China.
Polyphenols, rich in phenolic structures, are widely found in plants and known for disturbing the cellular oxidative stress and regulating the signal pathways of tumor proliferation and metastasis, making them valuable in cancer therapy. Polyphenols display high adherence due to the presence of phenolic hydroxyl groups, which enables the formation of covalent and non-covalent interactions with different materials. However, nonspecific adhesion of polyphenols carries significant risks in applications as polyphenols might adhere to proteins and polysaccharides in the bloodstream or gastrointestinal tract, leading to thrombosis and lithiasis.
View Article and Find Full Text PDF