Transcriptomics-based analysis of Macrobrachium rosenbergii growth retardation.

Comp Biochem Physiol Part D Genomics Proteomics

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centr

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrobrachium rosenbergii is an economically important crustacean in many parts of the world, but in recent years, growth retardation has become an increasingly serious issue. While the underlying causes remain unclear, this has inevitably impacted on aquaculture and production outputs. In this study, gill, hepatopancreas, and muscle tissue samples from M. rosenbergii, with distinct growth differences, underwent transcriptome sequencing and bioinformatics analyses using high-throughput sequencing. In total, 59,796 unigenes were annotated. Differential expression analyses showed that the most differentially expressed genes (DEGs) were screened in gill tissue (1790 DEGs). In muscle and hepatopancreas tissues, 696 and 598 DEGs were screened, respectively. These DEGs were annotated to Kyoto Encyclopedia of Genes and Genomes pathways, which identified several significantly enriched pathways related to growth metabolism, such as PI3K-AKT, glycolysis/gluconeogenesis, and starch and sucrose metabolism. These results suggest that low growth metabolism levels may be one cause of M. rosenbergii growth retardation. Our data provide support for further investigations into the causes and molecular mechanisms underpinning growth retardation in M. rosenbergii.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2024.101298DOI Listing

Publication Analysis

Top Keywords

growth retardation
16
macrobrachium rosenbergii
8
rosenbergii growth
8
degs screened
8
growth metabolism
8
growth
7
rosenbergii
5
transcriptomics-based analysis
4
analysis macrobrachium
4
retardation
4

Similar Publications

Brachyolmia type 4 (BCYM4, OMIM 612847) is a rare skeletal dysplasia characterized by mild epiphyseal and metaphyseal abnormalities. We report a Chinese boy with brachyolmia caused by a novel compound heterozygous mutation in the gene. Prenatal ultrasound revealed shortened long bones, and his birth length was markedly reduced (45 cm, -3.

View Article and Find Full Text PDF

MAGIS syndrome: phenotypes, pathogenesis, and treatment.

J Hum Immun

November 2025

Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, NIAID, NIH, Bethesda, MD, USA.

Inborn errors of immunity (IEI) presenting with immunodeficiency and autoimmunity can illuminate pathways essential for immunocompetence and self-tolerance. We recently characterized a new IEI named MAGIS ("idline malformations of the brain, nterior pituitary gland dysfunction, rowth retardation, mmunodysregulation/immunodeficiency, and keletal defects") caused by heterozygous germline activating mutations in (encoding the heterotrimeric G-protein, G). This disorder demonstrates the central role of G regulation of chemotaxis in humans and a novel pathway by which G-proteins regulate T-cell activation.

View Article and Find Full Text PDF

Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF

In Brief: Advanced maternal age (AMA) is associated with adverse pregnancy outcomes, particularly those associated with placental dysfunction. This study showed that in a mouse model of AMA, male but not female fetuses had increased placental apoptosis and lipid peroxidation, as well as increased mitochondrial content, suggesting that the placentas of male fetuses in AMA mothers adapt to be able to deliver sufficient energy to the fetus.

Abstract: Although advanced maternal age (AMA) increases the risk of fetal growth restriction (FGR) and stillbirth, the mechanisms leading to the placental dysfunction observed in AMA are unknown.

View Article and Find Full Text PDF