98%
921
2 minutes
20
The use of human and veterinary drugs has led to the accumulation of pharmaceuticals in various aquatic environments at progressively increasing levels, exhibiting strong ecological risks. Metformin is widely used as a first-line prescription drug for the treatment of type 2 diabetes mellitus as well as a livestock drug. Unlike other drugs, metformin is not metabolized in the body, and almost all of its intake is excreted and released into the aquatic environment via urine and feces, causing adverse effects on aquatic ecosystems. This review provides an overview of the occurrence and detection of metformin in the aquatic environment and its toxic effects on different aquatic organisms (fish, daphnia, rotifers, chlorella). Metformin has been documented in a variety of aqueous environments such as wastewater, surface water, and groundwater as well as drinking water. The wide distribution of metformin in the aqueous environment calls for the development of more accurate detection methods. This paper reviews detection methods for metformin in the aqueous environment and evaluates their advantages and disadvantages. Toxicity studies have shown that metformin can cause adverse reactions in fish, such as oxidative stress, genotoxicity, disruption of intestinal flora, and morphological alterations; it also affects the growth and reproduction of small aquatic organisms. Knowledge gaps in the field of metformin research were assessed, and future research priorities were identified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281297 | PMC |
http://dx.doi.org/10.3390/toxics12070483 | DOI Listing |
Environ Monit Assess
September 2025
Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.
Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.
View Article and Find Full Text PDFJ Vet Med Sci
September 2025
Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University.
Local anesthetics such as lidocaine have been used in humans and other animals to perform surgical procedures, therapeutics, and experiments. Lidocaine discarded into the environment through industrial waste, human and animal excretion, and household waste has been detected in the aquatic environment. For example, lidocaine in rivers, lakes, and influent and effluent water has been detected at wastewater treatment plants (7 ng/L-2.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.
Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China. Electronic address:
As a member of the inflammatory caspases, Caspase-1 can increase the host inflammatory response against pathogen invasion and also function dominantly in apoptosis. In this study, we cloned and obtained two transcripts of Caspase-1 in large yellow croaker (Larimichthys crocea), namely Lc-Caspase-1_tv1 and Lc-Caspase-1_tv2. The ORF of Lc-Caspase-1_tv1 is 1,239 bp, whereas Lc-Caspase-1_tv2 is 1,167 bp in length, encoding a protein of 412 and 388 aa, and both of which contains a CARD and a CASc domain.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China. Electronic address:
Oil spills pose critical risks to coastal ecosystems, leading to bioaccumulation in cultured species and long-term economic repercussions for coastal communities. Biomarkers including hopanes and steranes have been widely used in oil fingerprinting. An aquatic microcosm was established in this study to simulate real-life marine conditions, enabling systematic monitoring of oil distributions in various aquatic mediums during nearly a month period.
View Article and Find Full Text PDF