98%
921
2 minutes
20
EEG signals capture information through multi-channel electrodes and hold promising prospects for human emotion recognition. However, the presence of high levels of noise and the diverse nature of EEG signals pose significant challenges, leading to potential overfitting issues that further complicate the extraction of meaningful information. To address this issue, we propose a Granger causal-based spatial-temporal contrastive learning framework, which significantly enhances the ability to capture EEG signal information by modeling rich spatial-temporal relationships. Specifically, in the spatial dimension, we employ a sampling strategy to select positive sample pairs from individuals watching the same video. Subsequently, a Granger causality test is utilized to enhance graph data and construct potential causality for each channel. Finally, a residual graph convolutional neural network is employed to extract features from EEG signals and compute spatial contrast loss. In the temporal dimension, we first apply a frequency domain noise reduction module for data enhancement on each time series. Then, we introduce the Granger-Former model to capture time domain representation and calculate the time contrast loss. We conduct extensive experiments on two publicly available sentiment recognition datasets (DEAP and SEED), achieving 1.65% improvement of the DEAP dataset and 1.55% improvement of the SEED dataset compared to state-of-the-art unsupervised models. Our method outperforms benchmark methods in terms of prediction accuracy as well as interpretability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275820 | PMC |
http://dx.doi.org/10.3390/e26070540 | DOI Listing |
Biomed Phys Eng Express
September 2025
electrical engineering department, Indian Institute of Technology Roorkee, Research wing, electrical department, Roorkee, uttrakhand, 247664, INDIA.
Imagined speech classification involves decoding brain signals to recognize verbalized thoughts or intentions without actual speech production. This technology has significant implications for individuals with speech impairments, offering a means to communicate through neural signals. The prime objective of this work is to propose an innovative machine learning (ML) based classification methodology that combines electroencephalogram (EEG) data augmentation using a sliding window technique with statistical feature extraction from the amplitude and phase spectrum of frequency domain EEG segments.
View Article and Find Full Text PDFIEEE Trans Cybern
September 2025
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.
View Article and Find Full Text PDFCereb Cortex
August 2025
Brain and Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium.
Centro-parietal electroencephalogram signals (centro-parietal positivity and error positivity) correlate with the reported level of confidence. According to recent computational work these signals reflect evidence which feeds into the computation of confidence, not directly confidence. To test this prediction, we causally manipulated prior beliefs to selectively affect confidence, while leaving objective task performance unaffected.
View Article and Find Full Text PDFActa Paediatr
September 2025
Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Innsbruck, Austria.
Aim: To evaluate the relationship between amplitude-integrated electroencephalography (aEEG), general movement assessment (GMA) and later motor outcome in preterm infants.
Methods: This retrospective study analysed data from 274 very preterm infants born at Innsbruck Medical University Hospital. aEEG was performed within 72 h of birth and weekly for the first month.
Nat Methods
September 2025
Department of Radiology, Michigan State University, East Lansing, MI, USA.
Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.
View Article and Find Full Text PDF