98%
921
2 minutes
20
Background: Resilience is a protective factor in healthy aging, helping to maintain and recover physical and mental functions. The Resilience in Illness Model has proven effective in fostering resilience and well-being. Physical activity is crucial for older adults' independence and well-being, even as aging causes a progressive decline. Additionally, older adults face challenges such as spousal loss and physical disability, making preventive intervention strategies necessary.
Objective: This study aims to develop and evaluate a web-based program to enhance resilience, physical activity, and well-being among community-dwelling older adults. Additionally, we aim to gather feedback on the program's strengths and limitations.
Methods: A 4-week resilience-enhancing program was created, incorporating role-play and talk-in-interaction and focusing on 3 key skills: coping, control belief, and manageability. The program included scenarios such as becoming widowed and suffering a stroke, designed to engage older adults. A pilot test preceded the intervention. As a result of the COVID-19 pandemic, the program shifted from in-person to web-based sessions. A single-blind, parallel-group, randomized controlled trial was conducted. Participants aged over 65 years were recruited offline and randomly assigned to either an intervention or control group. A certified resilience practitioner delivered the program. Outcomes in resilience, physical activity, and well-being were self-assessed at baseline (T0), 4 weeks (T1), and 12 weeks (T2) after the program. A mixed methods approach was used to evaluate feedback.
Results: A web-based participatory program enhancing 3 skills-coping, control belief, and manageability for resilience-was well developed. Among 96 participants, 63 were randomized into the intervention group (n=31) and the control group (n=32). The mean age in the intervention group was 69.27 (SD 3.08) years and 74.84 (SD 6.23) years in the control group. Significant between-group differences at baseline were found in age (t45.6=-4.53, P<.001) and physical activity at baseline (t61=2.92, P=.005). No statistically significant between-group differences over time were observed in resilience (SE 7.49, 95% CI -10.74 to 18.61, P=.60), physical activity (SE 15.18, 95% CI -24.74 to 34.74, P=.74), and well-being (SE 3.74, 95% CI -2.68 to 11.98, P=.21) after controlling for baseline differences. The dropout rate was lower in the intervention group (2/31, 6%) compared with the control group (5/32, 16%). Moreover, 77% (24/31) of participants in the intervention group completed the entire program. Program feedback from the participants indicated high satisfaction with the web-based format and mentorship support.
Conclusions: This study demonstrated that a web-based resilience-enhancing program is appropriate, acceptable, feasible, and engaging for community-dwelling older adults. The program garnered enthusiasm for its potential to optimize resilience, physical activity, and well-being, with mentorship playing a crucial role in its success. Future studies should aim to refine program content, engagement, and delivery methods to effectively promote healthy aging in this population.
Trial Registration: ClinicalTrials.gov NCT05808491; https://clinicaltrials.gov/ct2/show/NCT05808491.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310648 | PMC |
http://dx.doi.org/10.2196/53450 | DOI Listing |
Physiol Int
September 2025
2Faculty of Sports Science, Ningbo University, No. 818 Fenghua Road, Jiangbei District, 315211, Ningbo City, Zhejiang Province, PR China.
Purpose: Contribution of the gastrocnemii muscles to ankle moment is influenced by the knee joint position because they span the knee and the ankle joint as well. However, limited information is available on the effect of knee joint position on soleus activation under dynamic plantarflexion, hence the aim of this study was to investigate if soleus have a compensatory strategy in fascicle behavior or EMG activity during knee flexed plantarflexion in order to reduce the magnitude of the decrement in ankle moment.
Equipment And Methods: Isokinetic dynamometry with EMG and ultrasound measurements was used to estimate medial gastrocnemius and soleus behavior during knee flexed and extended plantarflexions using three angular velocities.
Physiother Theory Pract
September 2025
School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
Background: Knee osteoarthritis (OA) causes pain and diminishes quality of life. Backward walking exercise (BWE) has been shown to improve lower muscle strength and reduce knee adduction moment, making it a recommended intervention for knee OA rehabilitation. This study aims to evaluate the effectiveness of BWE combined with conventional rehabilitation programs on pain intensity and disability among individuals with knee OA.
View Article and Find Full Text PDFJ Strength Cond Res
September 2025
Institute for Data Analysis and Process Design, ZHAW, Zurich, Switzerland; and.
Achermann, BB, Drewek, A, and Lorenzetti, SR. Acute effect of the bounce squat on ground reaction force at the turning point and barbell kinematics. J Strength Cond Res XX(X): 000-000, 2025-The free-weight back squat is a key exercise for developing lower-body strength, with variations that influence muscle activation and performance.
View Article and Find Full Text PDFJ Behav Med
September 2025
Department of Psychology, University of Wisconsin-La Crosse, La Crosse, WI, USA.
Latent profile analysis (LPA) is in the finite mixture model analysis family and identifies subgroups by participants' responses to continuous variables (i.e., indicators); participants' probable membership in each subgroup is based on the similarity between the subgroup's prototypical responses and the person's unique responses.
View Article and Find Full Text PDFCurr Cardiol Rep
September 2025
Division of Cardiology, Health Sciences Building, University of Washington Medical Center, 1959 NE Pacific StreetSuite #A506D Box 356422, Seattle, WA, 98195, USA.
Purpose Of Review: Patients living with cancer are at risk for significant potential cardiovascular complications as a direct result of cancer treatment or due to underlying comorbid cardiovascular disease. This article reviews the methods of risk stratification as well as pharmacologic and nonpharmacologic approaches to cardioprotection in cardio-oncology.
Recent Findings: Several cancer-specific risk stratification tools have incorporated variables such as age, sex, cancer subtype, traditional cardiovascular risk factors and cancer treatment-related parameters to assess cardiovascular specific risk prior to cancer therapy.