Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Angelman syndrome (AS) is a rare neurodevelopmental genetic disorder caused by the loss of function of the ubiquitin ligase E3A (UBE3A) gene, affecting approximately 1:15,000 live births. We have recently shown that mitochondrial function in AS is altered during mid to late embryonic brain development leading to increased oxidative stress and enhanced apoptosis of neural precursor cells. However, the overall alterations of metabolic processes are still unknown. Hence, as a follow-up, we aim to investigate the metabolic profiles of wild-type (WT) and AS littermates and to identify which metabolic processes are aberrant in the brain of AS model mice during embryonic development.

Methods: We collected brain tissue samples from mice embryos at E16.5 and performed metabolomic analyses using proton nuclear magnetic resonance (H-NMR) spectroscopy. Multivariate and Univariate analyses were performed to determine the significantly altered metabolites in AS mice. Pathways associated with the altered metabolites were identified using metabolite set enrichment analysis.

Results: Our analysis showed that overall, the metabolomic fingerprint of AS embryonic brains differed from those of their WT littermates. Moreover, we revealed a significant elevation of distinct metabolites, such as acetate, lactate, and succinate in the AS samples compared to the WT samples. The elevated metabolites were significantly associated with the pyruvate metabolism and glycolytic pathways.

Limitations: Only 14 metabolites were successfully identified and investigated in the present study. The effect of unidentified metabolites and their unresolved peaks was not determined. Additionally, we conducted the metabolomic study on whole brain tissue samples. Employing high-resolution NMR studies on different brain regions could further expand our knowledge regarding metabolic alterations in the AS brain. Furthermore, increasing the sample size could reveal the involvement of more significantly altered metabolites in the pathophysiology of the AS brain.

Conclusions: Ube3a loss of function alters bioenergy-related metabolism in the AS brain during embryonic development. Furthermore, these neurochemical changes could be linked to the mitochondrial reactive oxygen species and oxidative stress that occurs during the AS embryonic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267930PMC
http://dx.doi.org/10.1186/s13229-024-00608-2DOI Listing

Publication Analysis

Top Keywords

altered metabolites
12
metabolic alterations
8
angelman syndrome
8
loss function
8
oxidative stress
8
metabolic processes
8
brain tissue
8
tissue samples
8
metabolites identified
8
embryonic development
8

Similar Publications

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF

Background: The emergence of drug-resistant pathogens has stimulated the need for the development of new antimicrobial agents. Epigenetic modulation by suppressing epigenetic inhibitors, such as 5-azacytidine (5-aza), has been shown to activate silent biosynthetic gene clusters within a fungus and causes the production of novel secondary metabolites. This research examined this epigenetic modification strategy in the poorly studied filamentous fungus, Ceratorhiza hydrophila, which may help induce the additional production of bioactive compounds.

View Article and Find Full Text PDF

Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.

View Article and Find Full Text PDF

Patients with diabetics usually exhibit disordered glucose and lipid metabolism, as well as disrupted intestinal microecology. Dietary adjustment is essential for controlling diabetes. This study evaluated the ameliorative effects of psyllium-derived medium-molecular-weight arabinoxylan (MMW-AX) on glycolipid biochemical indicators, pathological symptoms, and intestinal microbial diversity in mice with Type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Non-target metabolomic approach of the toxic effects of glyphosate in zebrafish (D. rerio).

Environ Res

September 2025

Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:

Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.

View Article and Find Full Text PDF