Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Using the 10x Genomics Chromium single-cell RNA sequencing (scRNA-seq) platform, we discovered unexpected heterogeneity in an established cell line developed from the midgut of the Fall armyworm, Spodoptera frugiperda, a major global pest. We analyzed the sequences of 18,794 cells and identified ten unique cellular clusters, including stem cells, enteroblasts, enterocytes and enteroendocrine cells, characterized by the expression of specific marker genes. Additionally, these studies addressed an important knowledge gap by investigating the expression of genes coding for respiratory and midgut membrane insecticide targets classified by the Insecticide Resistance Action Committee. Dual-fluorescence tagging method, fluorescence microscopy and fluorescence-activated cell sorting confirmed the expression of midgut cell type-specific genes. Stem cells were isolated from the heterogeneous population of SfMG-0617 cells. Our results, validated by KEGG and Gene Ontology analyses and supported by Monocle 3.0, advance the fields of midgut cellular biology and establish standards for scRNA-seq studies in non-model organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2024.110898DOI Listing

Publication Analysis

Top Keywords

spodoptera frugiperda
8
midgut cell
8
rna sequencing
8
stem cells
8
midgut
5
cell
5
cells
5
deciphering cellular
4
cellular heterogeneity
4
heterogeneity spodoptera
4

Similar Publications

Successful biological control requires accurate knowledge of the host preference of the released parasitoid. Telenomus remus Nixon (1973) is an effective parasitoid of Spodoptera frugiperda (J.E.

View Article and Find Full Text PDF

Background: The parasitoid Chelonus bifoveolatus is a promising biocontrol agent against the invasive fall armyworm (FAW) Spodoptera frugiperda, but its practical application hinges on cost-effective mass rearing. This study compares the biological performance and production economics of Ch. bifoveolatus reared on two factitious hosts (Corcyra cephalonica and Spodoptera litura) under controlled laboratory conditions.

View Article and Find Full Text PDF

Insights into the toxicity effects of indoxacarb against Spodoptera frugiperda using metabolomics combined with mass spectrometry imaging.

Pest Manag Sci

September 2025

National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, China.

Background: As one of the most destructive and invasive pests for various plants in China, Spodoptera frugiperda (Lepidoptera: Noctuidae) poses an enormous threat to food security and results in serious economic losses for harvesting and consumption of agricultural vegetables. To this end, indoxacarb has shown great promise as an effective insecticide against Spodoptera frugiperda. It is metabolized by insect esterases or amidases into the N-decarbomethoxy metabolite (DCJW), which is a key metabolite responsible for the insecticidal activity of indoxacarb.

View Article and Find Full Text PDF

The limited water solubility and environmental instability of natural pesticidal compounds impede their broader agricultural use. This study reports an amphiphile-assisted nanoprecipitation method to imbibe azadirachtin-rich neem seed extract (NSE) within a glycine carrier matrix, yielding a stable nanocomposite biopesticide. The formulation, prepared using polyoxyethylene sorbitan monooleate as a stabilizer and glycine as the matrix former, followed by lyophilization, exhibited a hydrodynamic diameter of ∼8 nm when redispersed in water.

View Article and Find Full Text PDF

Metabolic benefits conferred by duplication of the facilitated trehalose transporter in Lepidoptera.

Insect Sci

September 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China.

In addition to being one of the primary processes for the formation and expansion of gene families, gene duplication also establishes the basis for the diversity and redundancy of gene functions, providing an abundance of genetic resources and a potent adaptive potential for biological evolution. Trehalose is a high-quality carbon source and blood sugar in insects. However, recent theoretical developments suggest that mechanisms for facilitated trehalose transport in lepidopteran insects remain relatively scarce.

View Article and Find Full Text PDF