98%
921
2 minutes
20
Background: Compulsive- and anxiety-like behaviour can be efficiently modelled in SAPAP3 knockout (KO) mice, a preclinical model of relevance to obsessive-compulsive disorder (OCD). Although there is emerging evidence in the clinical literature of gastrointestinal dysfunction in OCD, no previous studies have investigated gut function in preclinical models of relevance to OCD. Similarly, the effects of voluntary exercise (EX) or environmental enrichment (EE) have not yet been explored in this context.
Method: We comprehensively phenotyped the SAPAP3 KO mouse model, including the assessment of grooming microstructure, anxiety- and depressive-like behaviour, and gastrointestinal function. Mice were exposed to either standard housing (SH), exercise (EX, provided by giving mice access to running wheels), or environmental enrichment (EE) for 4 weeks to investigate the effects of enriched housing conditions in this animal model relevant to OCD.
Findings: Our study is the first to assess grooming microstructure, perseverative locomotor activity, and gastrointestinal function in SAPAP3 KO mice. We are also the first to report a sexually dimorphic effect of grooming in young-adult SAPAP3 KO mice; along with changes to grooming patterning and indicators of gut dysfunction, which occurred in the absence of gut dysbiosis in this model. Overall, we found no beneficial effects of voluntary exercise or environmental enrichment interventions in this mouse model; and unexpectedly, we revealed a deleterious effect of wheel-running exercise on grooming behaviour. We suspect that the detrimental effects of experimental housing in our study may be indicative of off-target effects of stress-a conclusion that warrants further investigation into the effects of chronic stress in this preclinical model of compulsive behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jad.2024.07.143 | DOI Listing |
Beilstein J Nanotechnol
October 2024
Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy.
Among the different micro- and nanostructures located on cuticular surfaces, grooming devices represent fundamental tools for insect survival. The present study describes the grooming microstructures of the damselfly (Odonata, Coenagrionidae) at the adult stage. These structures, situated on the foreleg tibiae, were observed using scanning electron microscopy, and the presence and distribution of resilin, an elastomeric protein that enhances cuticle flexibility, were analyzed using confocal laser scanning microscopy.
View Article and Find Full Text PDFJ Affect Disord
October 2024
Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia. Electronic address:
Biomedicines
June 2024
Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia.
Playing a key role in the organization of striatal motor output, the dopamine (DA)-ergic system regulates both innate and complex learned behaviors. Growing evidence clearly indicates the involvement of the DA-ergic system in different forms of repetitive (perseverative) behavior. Some of these behaviors accompany such disorders as obsessive-compulsive disorder (OCD), Tourette's syndrome, schizophrenia, and addiction.
View Article and Find Full Text PDFNeurol Int
February 2023
Institute of Experimental Medicine, 197376 Saint Petersburg, Russia.
Trace amines and their receptors are a family of G protein-coupled receptors widely distributed in the central nervous system and periphery. The trace amine-associated receptor 1 (TAAR1) plays a significant role as a therapeutic target for schizophrenia, depression, diabetes, and obesity. In this study, TAAR1 knockout mice and WT groups were tested in conditions of a high-fructose diet.
View Article and Find Full Text PDFFront Behav Neurosci
February 2022
Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Grooming is a common behavior for animals to care for their fur, maintain hygiene, and regulate body temperature. Since various factors, including stressors and genetic mutations, affect grooming quantitatively and qualitatively, the assessment of grooming is important to understand the status of experimental animals. However, current grooming detection methods are time-consuming, laborious, and require specialized equipment.
View Article and Find Full Text PDF