98%
921
2 minutes
20
Based on the Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway, this study observed the regulatory effect of ginsenoside Rb_1(Rb_1) on liver lipid metabolism in db/db obese mice and explored its potential mechanism. Thirty 6-week-old male db/db mice were randomly divided into a model group, a metformin group, and Rb_1 groups with low, medium, and high doses, with six mice in each group. Additionally, six age-matched male db/m mice were assigned to the normal group. The intervention lasted for five weeks. Body weight, fasting blood glucose, and food intake were mea-sured weekly. At the end of the experiment, serum lipid levels and liver function were detected. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in liver tissue. Real-time quantitative PCR and immunohistochemistry on paraffin sections were used to detect the mRNA and protein expression of TLR4, MyD88, and NF-κB p65. RESULTS:: showed that compared with the normal group, the model group exhibited significant increases in body weight, liver weight, liver index, epididymal fat mass, epididymal fat index, total cholesterol, low-density lipoprotein cholesterol, liver function parameters, and fasting blood glucose levels. Liver lipid accumulation significantly increased, along with elevated mRNA and protein expression of TLR4, MyD88, and NF-κB p65 in the liver. After Rb_1 treatment, the above-mentioned parameters in the intervention groups showed significant reversals. In conclusion, Rb_1 can improve obesity and obesity-related hepatic steatosis in mice while regulating abnormal lipid and glucose meta-bolism. Mechanistically, Rb_1 may improve liver steatosis in db/db obese mice by modulating the TLR4/MyD88/NF-κB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20240411.405 | DOI Listing |
Cureus
August 2025
Bioresource Engineering, Sejong University, Seoul, KOR.
Background Type 2 diabetes (T2D) is a complex metabolic disorder characterized by impaired glucose regulation and insulin resistance and frequently accompanied by obesity and dyslipidemia. The search for novel therapeutic agents to manage these metabolic parameters remains ongoing. Pepper fruit (cv.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Department of Science and Technology, University of Sannio, Benevento, Italy.
Metabolic syndrome (MetS)-related diseases, such as type 2 diabetes (T2D) and obesity, are among the leading causes of liver damage, and their prevalence poses an increasing clinical challenge. The Mediterranean diet (MD) has shown promising effects in managing MetS, reducing mortality and morbidity. However, the precise biochemical and molecular mechanisms underlying the MD efficacy remain unclear.
View Article and Find Full Text PDFMol Metab
August 2025
Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, and departments of Nutrition and Biochemistry, University of Montreal, Montreal, Canada. Electronic address:
Some individuals exhibit metabolically healthy obesity, characterized by the expansion of white adipose tissue (WAT) without associated complications. The monoacylglycerol (MAG) hydrolase α/β-hydrolase domain-containing 6 (ABHD6) has been implicated in energy metabolism, with its global deletion conferring protection against obesity. However, the immunometabolic roles of adipocyte ABHD6 in WAT remodeling in response to nutri-stress and obesity are not known.
View Article and Find Full Text PDFInflammation
August 2025
Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Bandeirantes Ave., Ribeirao Preto, SP, Brazil.
The adipokine chemerin is increased in the serum of individuals with obesity and type 2 diabetes. Patients with type 2 diabetes exhibit a threefold increased risk of developing tuberculosis, are more refractory to tuberculosis treatment and display more severe forms of the disease. Patients with type 2 diabetes and tuberculosis exhibit a dysfunctional immunological response characterized by a higher frequency of peripheral Th1 and Th17 cells, increased concentrations of pro- and anti-inflammatory cytokines, and a reduced microbicidal capacity compared to subjects affected exclusively by tuberculosis.
View Article and Find Full Text PDFDiabetes Obes Metab
October 2025
Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK.
Aims: The use of incretin analogues has emerged as an effective approach to achieve both enhanced insulin secretion and weight loss in Type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off-target effects remain a complication of using these agents, and modified versions with optimised pharmacological profiles and/or biased signalling are sought.
View Article and Find Full Text PDF