Screen-Printable Iontronic Pressure Sensor with Thermal Expansion Microspheres for Pulse Monitoring.

ACS Appl Mater Interfaces

Pen-Tung Sah Institute of Micro-Nano Science and Technology, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Constructing microstructures to improve the sensitivity of flexible pressure sensors is an effective approach. However, the preparation of microstructures usually involves inverted molds or subtractive manufacturing methods, which are difficult in large-scale (e.g., in screen printing) preparation. To solve this problem, we introduced thermally expandable microspheres for screen printing to fabricate flexible sensors. Thermally expandable microspheres can be constructed into microstructures by simple heating after printing, which simplifies the microstructure fabrication step. In addition, the added microspheres can also be used as ionic liquid reservoir materials to further increase the capacitance change and improve the sensitivity. The prepared sensors exhibited superior performance, including ultrahigh sensitivity ( = 49999.5 kPa) and wide detection range (0-350 kPa). Even after 30,000 cycles at a high pressure of 300 kPa and a low pressure of 30 kPa, the sensor showed minimal signal degradation, demonstrating long-term cycling stability. In order to verify the practical potential of the sensors, we performed human radial artery beat detection experiments using these sensors. The variations in the intensity of the 3D radial artery pulse wave can be observed very clearly, which is important for human health monitoring. The above demonstrates that our strategy can provide an effective approach for the large-scale preparation of high-performance flexible pressure sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c05688DOI Listing

Publication Analysis

Top Keywords

improve sensitivity
8
flexible pressure
8
pressure sensors
8
effective approach
8
screen printing
8
thermally expandable
8
expandable microspheres
8
radial artery
8
sensors
6
pressure
5

Similar Publications

Accurate determination of the parameters of each high purity germanium, HPGe detectors ensure the precision of quantitative results obtained from spectrum analysis. This study presents a comprehensive performance evaluation and long-term quality control assessment of a high-purity germanium (HPGe) gamma spectrometry system that has been operational for over 15 years. Key spectrometric measures were recorded, including energy resolution, peak shape ratios, asymmetry, peak-to-Compton ratio, relative efficiency, electronic noise, minimum detectable activity (MDA), and repeatability and reproducibility of the system.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

The utility of thymus and spleen ultrasound in the early prediction of neonatal sepsis.

J Neonatal Perinatal Med

September 2025

Muratpaşa District Health Directorate, Antalya, Turkey.

BackgroundThis investigation aimed to determine the utility of postnatal, ultrasonographically-derived dimensions of the thymus and spleen as imaging indicators for the prediction of early-onset neonatal sepsis (EOS).Material and MethodIn this case-control study, 30 term neonates diagnosed with Early-Onset Sepsis (EOS), based on European Medicines Agency (EMA) criteria, were compared to 30 healthy, matched control neonates. All participants underwent ultrasonography to quantify thymic and splenic dimensions.

View Article and Find Full Text PDF