98%
921
2 minutes
20
Neuromorphic computing and artificial intelligence hardware generally aims to emulate features found in biological neural circuit components and to enable the development of energy-efficient machines. In the biological brain, ionic currents and temporal concentration gradients control information flow and storage. It is therefore of interest to examine materials and devices for neuromorphic computing wherein ionic and electronic currents can propagate. Protons being mobile under an external electric field offers a compelling avenue for facilitating biological functionalities in artificial synapses and neurons. In this review, we first highlight the interesting biological analog of protons as neurotransmitters in various animals. We then discuss the experimental approaches and mechanisms of proton doping in various classes of inorganic and organic proton-conducting materials for the advancement of neuromorphic architectures. Since hydrogen is among the lightest of elements, characterization in a solid matrix requires advanced techniques. We review powerful synchrotron-based spectroscopic techniques for characterizing hydrogen doping in various materials as well as complementary scattering techniques to detect hydrogen. First-principles calculations are then discussed as they help provide an understanding of proton migration and electronic structure modification. Outstanding scientific challenges to further our understanding of proton doping and its use in emerging neuromorphic electronics are pointed out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.4c00071 | DOI Listing |
Plast Reconstr Surg
September 2025
Department of Surgery, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
Background: Poor recovery of active glenohumeral external rotation (aGHER) after brachial plexus birth injury (BPBI) is common. Late spinal accessory nerve to infraspinatus motor branch (SAN-IS) transfer has been reported as effective. We investigated its efficacy in children over 4 years with BPBI.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Strain sensors have received considerable attention in personal healthcare due to their ability to monitor real-time human movement. However, the lack of chemical sensing capabilities in existing strain sensors limits their utility for continuous biometric monitoring. Although the development of dual wearable sensors capable of simultaneously monitoring human motion and biometric data presents significant challenges, the ability to fabricate these sensors with geometries tailored to individual users is highly desirable.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.
Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.
View Article and Find Full Text PDFNano Lett
September 2025
Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, College of Future Information Technology, Fudan University, Shanghai 200433, China.
The separation and propagation of spin are vital to understanding spin-orbit coupling (SOC) in quantum systems. Exciton-polaritons, hybrid light-matter quasiparticles, offer a promising platform for investigating SOC in quantum fluids. By utilization of the optical anisotropy of materials, Rashba-Dresselhaus SOC (RDSOC) can be generated, enabling robust polariton spin transport.
View Article and Find Full Text PDF