Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiative cooling window has been designed to emit infrared radiation in the atmospheric transparency window and reflects near-infrared light while allowing visible light to pass through. However, improvements are still needed in the transmissivity of visible light, the reflectivity of near-infrared light, and emissivity of mid-infrared spectra. This paper proposes a color-preserving radiative cooling window consisting of a multilayer film as a transparent near-infrared reflector and polydimethylsiloxane (PDMS) as a thermal emitter. This design involves optimizing the types of film materials, the number of layers, and the thicknesses of the films through a genetic algorithm. The performance of multilayer films with various layer numbers is compared, and we choose 7-layer multilayer film (AlO/Ag/AlO/Ag/AlO/Ag/AlO) as the transparent near-infrared reflector. Then, we analyze its spectral characteristics in depth. Sequentially, we place a 100-μm-thick PDMS as a thermal emitter above the transparent near-infrared reflector. By combining the transparent near-infrared reflector with the PDMS and utilizing genetic algorithm, a color-preserving radiative cooling window has been achieved with flat and broadband average visible transmittance (86%), high average near-infrared reflectance (86%), high average thermal emissivity (95%) in the atmospheric window, and the drop of temperature (22.3, 21.2, and 15.8 K when nonradiative heat coefficient is, respectively, 0, 6, and 12 W/m/K).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256299PMC
http://dx.doi.org/10.1021/acsomega.4c01792DOI Listing

Publication Analysis

Top Keywords

radiative cooling
16
cooling window
16
transparent near-infrared
16
near-infrared reflector
16
color-preserving radiative
12
near-infrared light
8
visible light
8
multilayer film
8
pdms thermal
8
thermal emitter
8

Similar Publications

Reassignment of the vibronic structure in the absorption spectrum of carbon cluster anion C6- exhibiting fast radiative cooling.

J Chem Phys

September 2025

Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishibiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan.

Linear carbon cluster anions, such as C6-, have been considered to be promising candidate interstellar molecules. Recent experiments have demonstrated that in a collision-free vacuum environment, C6- exhibits fast radiative cooling from its highly vibrationally excited states through inverse internal conversion (IIC). Since IIC is driven by vibronic coupling, the understanding of vibronic structures of C6- is of theoretical significance.

View Article and Find Full Text PDF

Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.

View Article and Find Full Text PDF

Drought stress has profound impacts on ecosystems and societies, particularly in the context of climate change. Traditional drought indicators, which often rely on integrated water budget anomalies at various time scales, provide valuable insights but often fail to deliver clear, real-time assessments of vegetation stress. This study introduces the Cooling Efficiency Factor Index (CEFI), a novel metric purely derived from geostationary satellite observations, to detect vegetation drought stress by analyzing daytime surface warming anomalies.

View Article and Find Full Text PDF

Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation (SDIE) is an emerging eco-friendly and low-carbon technology and has been widely studied in the field of photothermal applications in recent years. With the attention and development of SDIE in innovation fields, new strategies, structures, and typical materials are gradually being developed and applied. Therefore, it is important to report on these latest developments.

View Article and Find Full Text PDF