Simplified Electrochemical Approach for End-Point Yet Quantitative Detection of Nucleic Acids in Resource-Limited Settings.

ACS Sens

State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nucleic acid detection plays a crucial role in various aspects of health care, necessitating accessible and reliable quantification methods, especially in resource-limited settings. This work presents a simplified electrochemical approach for end-point yet quantitative nucleic acid detection. By elevating the concentration of redox species and choosing potential as the signals, we achieved enhanced signal robustness, even in the presence of interfering substances. Leveraging this robustness, we accurately measured pH-induced redox potential changes in methylene blue solution for end-point nucleic acid detection after loop-mediated isothermal amplification (LAMP). Our method demonstrated quantitative detection of the SARS-CoV-2 N gene and human ATCB gene and successful discrimination of the human BRAF V600E mutation, comparable in sensitivity to commercial kits. The developed user-friendly electrochemical method offers a simplified and reliable approach for end-point yet quantitative detection of nucleic acids, potentially expanding the benefits of nucleic acid testing in resource-limited settings.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c01025DOI Listing

Publication Analysis

Top Keywords

nucleic acid
16
approach end-point
12
end-point quantitative
12
quantitative detection
12
resource-limited settings
12
acid detection
12
simplified electrochemical
8
electrochemical approach
8
detection nucleic
8
nucleic acids
8

Similar Publications

Multi drug resistant Pseudomonas aeruginosa in burn infection among Iraq patients.

Cell Mol Biol (Noisy-le-grand)

September 2025

Medical Microbiology Department, College of Medicine, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq.

Pseudomonas aeruginosa is a prominent opportunistic pathogen, especially in burn wound infections, and is often associated with high morbidity and mortality due to its multidrug resistance (MDR) characteristics.This study aimed to evaluate the multidrug resistance profile and perform a molecular phylogenetic analysis of P. aeruginosa isolates recovered from human burn infection sample .

View Article and Find Full Text PDF

The objective of this study was to evaluate the concentration and integrity index of circulating cell-free DNA (ccf-DNA) as biomarkers for the detection and monitoring of minimal residual disease (MRD) in pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). Comparison with a validated methodology for the quantification of monoclonal rearrangements of the IGH gene was made. Peripheral blood and bone marrow samples were collected from 10 pediatric patients with B-ALL at diagnosis, remission, and maintenance phases.

View Article and Find Full Text PDF

SIRT1 modulation and lipid profile alterations in the cellular regulation of blood lipids in renal disorders among extremely obese individuals.

Cell Mol Biol (Noisy-le-grand)

September 2025

University Sousse, Faculty of Medicine "Ibn El-Jazzar", Department of Medical Genetics, Sousse, Tunisia.

The global epidemic of overweight and obesity is closely linked to the development of chronic kidney disease (CKD), with extremely obese individuals facing a particularly high risk. This study aimed to assess the relationship between lipid profile levels, SIRT1 expression, and RNA-34a-5P in the regulation of blood lipid levels among severely obese individuals with renal diseases. Conducted over six months in three specialized hospitals, the study included 100 participants divided into two groups: 50 obese individuals with renal diseases and 50 obese controls without renal problems.

View Article and Find Full Text PDF

In the United States, the use of Food & Drug Administration (FDA)-licensed, approved, or cleared tests is required for infectious disease screening and determining the eligibility of deceased donors for all Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps). With the discontinuation of two manual enzyme-linked immunoassay (EIA) tests, automated Chemiluminescent Microparticle Immunoassay (CMIA) technology was introduced as the primary alternative. This study compares serologic reactivity rates between manual EIA and automated CMIA methods.

View Article and Find Full Text PDF

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF